36 resultados para chemoreception


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study of chemoreception in relation to feeding and other factors involved showed that feeding behavior in shrimps can be triggered by chemical stimuli. However, Penaeus indicus and Metapenaeus dobsoni differ significantly in their chemotactic response to different stimuli.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pheromones are chemical cues released and sensed by individuals of the same species, which are of major importance in regulating reproductive and social behaviors of mammals. Generally, they are detected by the vomeronasal system (VNS). Here, we first investigated and compared an essential genetic component of vomeronasal chemoreception, that is, TRPC2 gene, of four marine mammals varying the degree of aquatic specialization and related terrestrial species in order to provide insights into the evolution of pheromonal olfaction in the mammalian transition from land to water. Our results based on sequence characterizations and evolutionary analyses, for the first time, show the evidence for the ancestral impairment of vomeronasal pheromone signal transduction pathway in fully aquatic cetaceans, supporting a reduced or absent dependence on olfaction as a result of the complete adaptation to the marine habitat, whereas the amphibious California sea lion was found to have a putatively functional TRPC2 gene, which is still under strong selective pressures, reflecting the reliance of terrestrial environment on chemical recognition among the semiadapted marine mammals. Interestingly, our study found that, unlike that of the California sea lion, TRPC2 genes of the harbor seal and the river otter, both of which are also semiaquatic, are pseudogenes. Our data suggest that other unknown selective pressures or sensory modalities might have promoted the independent absence of a functional VNS in these two species. In this respect, the evolution of pheromonal olfaction in marine mammals appears to be more complex and confusing than has been previously thought. Our study makes a useful contribution to the current understanding of the evolution of pheromone perception of mammals in response to selective pressures from an aquatic environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Loggerhead sea turtle juveniles (Caretta caretta), pelagic stage, are found in waters of Madeira archipelago. Pelagic turtles are in the main growth phase of their life cycle and consequently higher energy needs. However, knowledge about the ecology of pelagic loggerhead sea turtles is still quite rudimentary, mainly about the mechanisms that lead them to find food in the vast ocean. Studies with other pelagic species, such as procellariiform birds, revealed that the olfactory system play an important role for the detection of feeding areas, through the detection of concentration peaks of DMS (dimethylsulfide), a scent compound that naturally exists in the marine environment and it is related to areas of high productivity. Based on the assumption that loggerhead sea turtles use a similar mechanism, behavioural experiments were conducted in order to analyze the chemoreception capacity to DMS (airborne chemoreception - theoretically responsible for the long distance detection of areas with food patches; and aquatic chemoreception - theoretically responsible for the short distance detection of preys). The first step was to observe if pelagic loggerheads demonstrate sensitivity to DMS and the second was to verify if they really use the DMS, in natural conditions, as an airborne cue to find areas where food patches might be available. Four juveniles of loggerhead sea turtles were tested in captivity and three wild turtles in the open ocean. The results of airborne chemoreception experiments in captivity revealed that one turtle clearly demonstrated sensitivity to DMS and the sea experiments confirmed this result. However, the experiments were not conclusive on the question whether the pelagic turtles actually use the DMS as an airborne cue to detect long distance food patches. In aquatic chemoreception experiments was not observed sensitivity to DMS by the three sea turtles tested. In the classical conditioning experiment, where DMS and food were given nearly at the same time revealed that after a certain period of time, the sea turtle tested did not associated the DMS stimulus with a possible food reward. The main cause of mortality of loggerhead sea turtles in Madeira waters is due to the accidental capture (bycatch) by deep pelagic longlines fishery which the target species is the black-scabbard (Aphanopus carbo) fish. Chub mackerel (Scomber japonicus) is one of the baits used in this fishery. Aquatic chemoreception experiments were conducted in order to evaluate the attractiveness of the chub mackerel for sea turtles. For the three sea turtles tested, the results showed that in 90% of the cases the sea turtles were extremely attracted by the underwater smell of this fish.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gaining insight into the mechanisms of chemoreception in aphids is of primary importance for both integrative studies on the evolution of host plant specialization and applied research in pest control management because aphids rely on their sense of smell

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experiments were conducted to identify the rules of the individual sense organs in the feeding behaviour of Chinese perch Siniperca chuatsi by determining the consumption of natural food after selective removal or blocking of eyes, lateral lines and olfactory organs, and also by observing the behavioural response to visual, mechanical and chemical stimulation by artificial prey. Chinese perch were able to feed properly on live prey fish when either eyes or lateral lines were intact or functional, but could scarcely feed without these two senses. Chinese perch recognized its prey by vision through the perception of motion and shape, and showed a greater dependence on vision in predation when both visual and mechanical cues were available. Chemical stimulation by natural food could not elicit any feeding response in Chinese perch, and gustation was only important to the fish for the last stage of food discrimination in the oropharyngeal cavity. The sensory basis of Chinese perch in feeding is well adapted to its nocturnal stalking hunting strategy. and also explains its peculiar food habit of accepting live prey fish only and refusing dead prey fish or artificial diets. (C) 1998 The Fisheries Society of the British Isles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chemoreception is a key activity by which many aquatic animals perceive their environment, and therefore abiotic disruptions to this process could have serious impacts on the survival and fitness of individuals, and on species interactions. Hermit crabs are subject to cyclical reductions in the pH of the water in the intertidal rock pools that they inhabit. Such reductions may be further exacerbated by ongoing ocean acidification and/or leakage of carbon dioxide from geological storage sites and coastal upwelling events. Here we test the chemo-sensory responses of the hermit crab Pagurus bernhardus (Linnaeus) to a food odour under reduced pH conditions (pHNBS = 6.80). Acidifying the odour had no effect on its attractiveness indicating no permanent degradation of the cue; however, the pH of the sea water did affect the crabs' responses. Hermit crabs kept and tested in reduced pH sea water had lower antennular flicking rates (the ‘sniffing’ response in decapods); were less successful in locating the odour source, and showed an overall decline in locomotory activity compared to those in untreated sea water. Analysis of their haemolymph revealed a greater concentration of chloride ions ([Cl−]) in the reduced pH treatment group, suggesting iono-regulatory disruption; however, there was no correlation between [Cl−] and locomotory activity, suggesting a specific effect on chemoreception. This study shows that the chemo-responsiveness of a crustacean may be influenced by both naturally occurring pH fluctuations and future anthropogenically-induced changes in ocean pH.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La apnea del prematuro es una patología frecuente que se presenta en el 85% de los recién nacidos menores de 34 semanas de edad gestacional y en el 95-100% de los menores de 28 semanas. Con respecto al peso al nacer, se manifiesta en el 92% de los de peso menor a 1250 gramos y en el 50% de los de peso menor a 1500 gramos. Desde 2003, se aprobó en Colombia el uso de citrato de cafeína para la prevención y el tratamiento de la apnea del prematuro, basados en la evidencia. Metodología: Se realizó un estudio de interención simple comparando el citrato de cafeína con la aminofilina para la prevención y manejo de la apnea en pretérminos menores de 35 semanas de edad. Resultados: Se incluyeron 118 recién nacidos pretérminos de los cuales 18,6% fueron menores de 28 semanas, 79,7% de 34 semanas y dos 1,7% mayores o iguales a 34,1 semanas. 56 neonatos recibieron citrato de cafeína. De éstos, 33,9% de forma profiláctica y 66,1%, terapéutica; 28 (23,7%) recibieron aminofilina y 34 (28,8%) no recibieron ninguno de los dos medicamentos. El citrato de cafeína mostró menos efectos secundarios comparado con aminofilina (p <0,01). Discusión: El citrato de cafeína, administrado en forma profiláctica o terapéutica, mostró resultados superiores, estadísticamente significativos, en comparación con aminofilina y con los controles sin tratamiento, para la prevención y el tratamiento de la apnea del prematuro, presentando, además, menores efectos secundarios.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A enguia mirongo-mirim Myrophis punctatus vive em agrupamentos de alta densidade populacional e comumente se enterra ou permanece sob o substrato. Esses comportamentos podem levar a marcas químicas no subtrato e podem, portanto, modular o uso do espaço nessa espécie. Neste estudo, testamos a hipótese de que a preferência espacial da enguia mirongo-mirim é influenciada pela presença de odor do animal coespecífico no subtrato. Mostramos que as enguias evitam a área que contém tal odor, indicando que as decisões de ocupação espacial podem ser influenciadas por pistas químicas de coespecíficos. As enguias claramente detectaram o odor de um animal coespecífico e essa percepção poderia ser um indicativo da presença de um coespecífico enterrado no substrato. Visto que elas evitam uma área contendo tal odor, sugerimos que isso poderia ser uma resposta para evitar invadir o território de um animal residente.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The locus coeruleus (LC) has been suggested as a CO2 chemoreceptor site in mammals. This nucleus is a mesencephalic structure of the amphibian brain and is probably homologous to the LC in mammals. There are no data available for the role of LC in the central chemoreception of amphibians. Thus the present study was designed to investigate whether LC of toads (Bufo schneideri) is a CO2/H+ chemoreceptor site. Fos immunoreactivity was used to verify whether the nucleus is activated by hypercarbia (5% CO2 in air). In addition, we assessed the role of noradrenergic LC neurons on respiratory and cardiovascular responses to hypercarbia by using 6-hydroxydopamine lesion. To further explore the role of LC in central chemosensitivity, we examined the effects of microinjection of solutions with different pH values (7.2, 7.4, 7.6, 7.8, and 8.0) into the nucleus. Our main findings were that 1) a marked increase in c-fos-positive cells in the LC was induced after 3 h of breathing a hypercarbic gas mixture; 2) chemical lesions in the LC attenuated the increase of the ventilatory response to hypercarbia but did not affect ventilation under resting conditions; and 3) microinjection with acid solutions (pH = 7.2, 7.4, and 7.6) into the LC elicited an increased ventilation, indicating that the LC of toads participates in the central chemoreception.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Teiid lizards are intesive foragers supposed to rely lagerly on chemoreception for prey detection, an ability that can be modified by previous feeding experiences. We investigated the ability of juvenile lizards, Tupinambis teguixin, in discriminate prey from non-prey odors as well as the effects of recent diet on these ability. Tegu lizards were able to discriminate prey odors and this ability probably is inate. The effect of recent diet was analysed through optimal foraging models and our results does not support in a broad sense the predictions made by theoretical models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The chambers of the rete testis (RT) of guinea pig are lined by a simple epithelium, whose cells are squamous, cubical and columnar in shape. The epithelial cells with distinct shapes were counted and the quantitative analysis of the number of these cells showed relative predominance of cubical cells. The ultrastructural observations showed predominance of membrane interdigitations among the epithelial cells. These cells present common cytoplasmic organelles. The Golgi complex polarity is typical with observation of electronlucent vesicles on the Golgi cis face closely related to rough endoplasmic reticulum (ER) lamellae, mitochondria and large number of polysomes on the Golgi trans face. These related structures present in Golgi area of RT cells suggest secretory activity which maybe occurs in the RT epithelium. Endocytotic process also occurs in the RT and this function probably concerns the uptake of substances and resorption of seminiferous fluid. Apical cilia present in RT epithelium cells are related with fluid transport and perhaps with chemoreception. Presence of spermatozoa portions enclosed into the cytoplasm of some epithelium cells has been refferred to as spermatophagy. The RT complex is mainly supported by loose connective tissue, with collagen fibres and some Leydig cells. Leydig cells are adjacent to the network channels of the septal part of the RT and apparently are able to secrete inside the RT lumen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New Findings: • What is the central question of this study? The main purpose of the present manuscript was to investigate the cardiorespiratory responses to hypoxia or hypercapnia in conscious rats submitted to neuronal blockade of the parafacial region. We clearly showed that the integrity of parafacial region is important for the respiratory responses elicited by peripheral and central chemoreflex activation in freely behavior rats. • What is the main finding and its importance? Since the parafacial region is part of the respiratory rhythm generator, they are essential for postnatal survival, which is probably due to their contribution to chemoreception in conscious rats. The retrotrapezoid nucleus (RTN), located in the parafacial region, contains glutamatergic neurons that express the transcriptor factor Phox2b and that are suggested to be central respiratory chemoreceptors. Studies in anaesthetized animals or in vitro have suggested that RTN neurons are important in the control of breathing by influencing respiratory rate, inspiratory amplitude and active expiration. However, the contribution of these neurons to cardiorespiratory control in conscious rats is not clear. Male Holtzman rats (280-300 g, n= 6-8) with bilateral stainless-steel cannulae implanted into the RTN were used. In conscious rats, the microinjection of the ionotropic glutamatergic agonist NMDA (5 pmol in 50 nl) into the RTN increased respiratory frequency (by 42%), tidal volume (by 21%), ventilation (by 68%), peak expiratory flow (by 24%) and mean arterial pressure (MAP, increased by 16 ± 4, versus saline, 3 ± 2 mmHg). Bilateral inhibition of the RTN neurons with the GABAA agonist muscimol (100 pmol in 50 nl) reduced resting ventilation (52 ± 34, versus saline, 250 ± 56 ml min-1 kg-1 with absolute values) and attenuated the respiratory response to hypercapnia and hypoxia. Muscimol injected into the RTN slightly reduced resting MAP (decreased by 13 ± 7, versus saline, increased by 3 ± 2 mmHg), without changing the effects of hypercapnia or hypoxia on MAP and heart rate. The results suggest that RTN neurons activate facilitatory mechanisms important to the control of ventilation in resting, hypoxic or hypercapnic conditions in conscious rats. © 2012 The Authors. Experimental Physiology © 2012 The Physiological Society.