970 resultados para chemical solution deposition method
Resumo:
LaNiO3 thin films were deposited on SrLaAlO4 (1 0 0) and SrLaAlO4 (0 0 1) single crystal substrates by a chemical solution deposition method and heat-treated in oxygen atmosphere at 700° C in tube oven. Structural, morphological, and electrical properties of the LaNiO 3 thin films were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), field emission scanning electron microscopy (FE-SEM), and electrical resistivity as temperature function (Hall measurements). The X-ray diffraction data indicated good crystallinity and a structural preferential orientation. The LaNiO3 thin films have a very flat surface and no droplet was found on their surfaces. Samples of LaNiO3 grown onto (1 0 0) and (0 0 1) oriented SrLaAlO4 single crystal substrates reveled average grain size by AFM approximately 15-30 nm and 20-35 nm, respectively. Transport characteristics observed were clearly dependent upon the substrate orientation which exhibited a metal-to-insulator transition. The underlying mechanism is a result of competition between the mobility edge and the Fermi energy through the occupation of electron states which in turn is controlled by the disorder level induced by different growth surfaces. © 2013 Elsevier Ltd and Techna Group S.r.l.
Resumo:
Smooth and continuous ZnO films consisting of densely packed ZnO nanorods (NRs), which can be used for electronic device fabrication, were synthesized using a hydro-thermo-chemical solution deposition method. Such devices would have the novelty of high performance, benefiting from the inherited unique properties of the nanomaterials, and can be fabricated on these smooth films using a conventional, low cost planar process. Photoluminescence measurements showed that the NR films have much stronger shallow donor to valence band emissions than those from discrete ZnO NRs, and hence have the potential for the development of ZnO light emission diodes and lasers, etc. The NR films have been used to fabricate large area surface acoustic wave devices by conventional photolithography. These demonstrated two well-defined resonant peaks and their potential for large area device applications. The chemical solution deposition method is simple, reproducible, scalable and economic. These NR films are suitable for large scale production on cost-effective substrates and are promising for various fields such as sensing systems, renewable energy and optoelectronic applications.
Resumo:
Electrically conductive LaNiO3-delta (LNO) thin films with typical thickness of 200 nm were deposited on Si (111) substrates by a chemical solution deposition method and heat-treated in air at 700 degreesC. Structural, morphological, and electrical properties of the LNO thin films were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), field-emission scanning electron microscopy (FEG-SEM), and electrical resistivity rho(T). The thin films have a very flat surface and no droplet was found on their surfaces. The average grain size observed by AFM and FEG-SEM was approximately 100 nm in excellent agreement with XRD data. The rho(T) data showed that these thin films display a good metallic character in a large range of temperature. These results suggest the use of this conductive layer as electrode in the integration of microelectronic devices. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We report the growth of hexagonal ZnO nanorods and nanoflowers on GaN-based LED epiwafer using a solution deposition method. We also discuss the mechanisms of epitaxial nucleation and of the growth of ZnO nanorods and nanoflowers. A GaN-based LED epiwafer was first deposited on a sapphire substrate by MOCVD with no electrode being fabricated on it. Vertically aligned ZnO nanorods with an average height of similar to 2.4 mu m were then grown on the LED epiwafer, and nanoflowers were synthesized on the nanorods. The growth orientation of the nanorods was perpendicular to the surface, and the synthesized nanoflowers were composed of nanorods. The micro-Raman spectra of the ZnO nanorods and nanoflowers are similar and both exhibit the E-2 (high) mode and the second-order multiple-phonon mode. The photoluminescence spectrum of ZnO nanostructures exhibits ultraviolet emission centred at about 380 nm and a broad and enhanced green emission centred at about 526 nm. The green emission of the ZnO nanostructures combined with the emission of InGaN quantum wells provides a valuable method to improve the colour rendering index (CRI) of LEDs.
Resumo:
Ca(Zr0.05Ti0.95)O-3 (CZT) thin films were grown on Pt(1 1 1)/Ti/SiO2/Si(1 0 0) substrates by the soft chemical method. The films were deposited from spin-coating technique and annealed at 928 K for 4 h under oxygen atmosphere. CZT films present orthorhombic structure with a crack free and granular microstructure. Atomic force microscopy and field-emission scanning electron microscopy showed that CZT present grains with about 47 nm and thickness about 450 nm. Dielectric constant and dielectric loss of the films was approximately 210 at 100 kHz and 0.032 at 1 MHz. The Au/CZT/Pt capacitor shows a hysteresis loop with remnant polarization of 2.5 mu C/cm(2), and coercive field of 18 kV/cm, at an applied voltage of 6 V. The leakage current density was about 4.6 x 10(-8) A/cm(2) at 3 V. Dielectric constant-voltage curve is located at zero bias field suggesting the absence of internal electric fields. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The effect of tungsten (W6+) ion substituting on dielectric and ferroelectric behavior in SrBi2(Ta0.5Nb0.5)(2)O-9 (SBTN) thin films prepared by polymeric precursor method was investigated at room temperature. The addition of W6+ ion in the SBTN lattice was evaluated by X-ray diffraction (XRD), microstructural and dielectrical properties. An increase in the grain size is evident when tungsten is introduced in the SBTN lattice. Substitution of tungsten until 10% on B site leads to introduce space charge polarization into the system, resulting in an appreciable decrease in both dielectric constant and tangent loss. The morphology of the thin films investigated by atomic force microscopy leads to an increase in the grain size after tungsten addition. Fatigue resistance was noted with increase in tungsten addition. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Intense photoluminescence in highly disordered strontium titanate amorphous thin films prepared by the polymeric precursor method was observed at room temperature (300 K). The luminescence spectra of SrTiO3 amorphous thin films at room temperature revealed an intense single-emission band in the visible region. X-ray absorption near edge structure was used to probe the local atomic structure of SrTiO3 amorphous and crystalline thin films. Photoluminescence intensity in the 535 nm range was found to be correlated with the presence of non-bridging oxygen defects. A discussion is presented of the nature of this photoluminescence, which may be related to the disordered structure in SrTiO3 amorphous thin films. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
CaSnO3 and SrSnO3 alkaline earth stannate thin films were prepared by chemical solution deposition using the polymeric precursor method on various single crystal substrates (R- and C-sapphire and 100-SrTiO3) at different temperatures. The films were characterized by X-ray diffraction (θ-2θ, ω- and φ-scans), field emission scanning electron microscopy, atomic force microscopy, micro-Raman spectroscopy and photoluminescence. Epitaxial SrSnO3 and CaSnO 3 thin films were obtained on SrTiO3 with a high crystalline quality. The long-range symmetry promoted a short-range disorder which led to photoluminescence in the epitaxial films. In contrast, the films deposited on sapphire exhibited a random polycrystalline growth with no meaningful emission regardless of the substrate orientation. The network modifier (Ca or Sr) and the substrate (sapphire or SrTiO3) influenced the crystallization process and/or the microstructure. Higher is the tilts of the SnO6 octahedra, as in CaSnO3, higher is the crystallization temperature, which changed also the nucleation/grain growth process. © 2012 Elsevier Inc. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
CaSnO3 and SrSnO3 alkaline earth stannate thin films were prepared by chemical solution deposition using the polymeric precursor method on various single crystal substrates (R- and C-sapphire and 100-SrTiO3) at different temperatures. The films were characterized by X-ray diffraction (θ-2θ, ω- and φ-scans), field emission scanning electron microscopy, atomic force microscopy, micro-Raman spectroscopy and photoluminescence. Epitaxial SrSnO3 and CaSnO3 thin films were obtained on SrTiO3 with a high crystalline quality. The long-range symmetry promoted a short-range disorder which led to photoluminescence in the epitaxial films. In contrast, the films deposited on sapphire exhibited a random polycrystalline growth with no meaningful emission regardless of the substrate orientation. The network modifier (Ca or Sr) and the substrate (sapphire or SrTiO3) influenced the crystallization process and/or the microstructure. Higher is the tilts of the SnO6 octahedra, as in CaSnO3, higher is the crystallization temperature, which changed also the nucleation/grain growth process.
Resumo:
High performance long-length coated conductors fabricated using various techniques have attracted a lot of interest recently. In this work, a reel-to-reel design for depositing double-sided coatings on long-length flexible metallic tapes via a chemical solution method is proposed and realized. The major achievement of the design is to combine the dip coating and drying processes in order to overcome the technical difficulties of dealing with the wet films on both sides of the tape. We report the successful application of the design to fabricate a one-meter-long double side coated CeO2/Ni-5at%W template. The CeO2 films on both sides exhibit a dense, crack-free morphology, and a high fraction of cube texture on the surface. Homogeneity studies on global texture over the length also reveal that the average full width at half maximum values of the in-plane and out-of-plane orientation on the CeO2 layer are 7.2 ° and 5.8° with standard deviation of 0.26° and 0.34°, respectively, being indicative of the high quality epitaxial growth of the films prepared in the continuous manner. An all chemical solution derived YBCOLow-TFA/Ce0.9La0.1O2 /Gd2Zr2O7/CeO2 structure is obtained on a short sample, demonstrating the possibility of producing long-length texture templates for coated conductors by this low cost deposition route.
Resumo:
Lead calcium titanate (Pb(1-x)Ca(x)TiO(3) or PCT) thin films have been thermally treated under different oxygen pressures, 10, 40 and 80 bar, by using the so-called chemical solution deposition method. The structural, morphological, dielectric and ferroelectric properties were characterized by x-ray diffraction, FT-infrared and Raman spectroscopy, atomic force microscopy and polarization-electric-field hysteresis loop measurements. By annealing at a controlled pressure of around 10 and 40 bar, well-crystallized PCT thin films were successfully prepared. For the sample submitted to 80 bar, the x-ray diffraction, Fourier transformed-infrared and Raman data indicated deviation from the tetragonal symmetry. The most interesting feature in the Raman spectra is the occurrence of intense vibrational modes at frequencies of around 747 and 820 cm(-1), whose presence depends strongly on the amount of the pyrochlore phase. In addition, the Raman spectrum indicates the presence of symmetry-breaking disorder, which would be expected for an amorphous (disorder) and mixed pyrochlore-perovskite phase. During the high-pressure annealing process, the crystallinity and the grain size of the annealed film decreased. This process effectively suppressed both the dielectric and ferroelectric behaviour. Ferroelectric hysteresis loop measurements performed on these PCT films exhibited a clear decrease in the remanent polarization with increasing oxygen pressure.