982 resultados para chemical diversity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although described almost a century ago, interest in ionic liquids has flourished in the last two decades, with significant advances in the understanding of their chemical, physical and biological property sets driving their widespread application across multiple and diverse research areas. Significant progress has been made through the contributions of numerous research groups detailing novel libraries of ionic liquids, often ‘task-specific’ designer solvents for application in areas as diverse as separation technology, catalysis and bioremediation. Basic antimicrobial screening has often been included as a surrogate indication of the environmental impact of these compounds widely regarded as ‘green’ solvents. Obviating the biological properties, specifically toxicity, of these compounds has obstructed their potential application as sophisticated designer biocides. A recent tangent in ionic liquids research now aims to harness tuneable biological properties of these compounds in the design of novel potent antimicrobials, recognising their unparalleled flexibility for chemical diversity in a severely depleted antimicrobial arsenal. This review concentrates primarily on the antimicrobial potential of ionic liquids and aims to consolidate contemporary microbiological background information, assessment protocols and future considerations necessary to advance the field in light of the urgent need for antimicrobial innovation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dung roller beetles of the genus Canthon (Coleoptera: Scarabaeinae) emit an odorous secretion from a pair of pygidial glands. To investigate the chemical composition of these secretions, we used stir bar sorptive extraction (SBSE), coupled with gas chromatography–mass spectrometry (GC–MS) for analysis of extracts of pygidial gland secretions secreted by the dung roller beetles Canthon femoralis femoralis and Canthon cyanellus cyanellus. Chemical analyses of volatiles collected from pygidial gland secretions comprise a great diversity of the functional groups. Chemical profile comparisons showed high intra- and interspecific variability. The pygidial gland secretion of Canthon f. femoralis was dominated by sesquiterpene hydrocarbons, whereas the profile of Canthon c. cyanellus was dominated by carboxylic acids. The different pygidial secretions have a high diversity of chemical compounds suggesting a multifunctional nature involving some key functions in the biology. We discuss the biological potential of these compounds found in the pygidial glands of each species with respect to their ecological and behavioral relevance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Biodiversity, a multidimensional property of natural systems, is difficult to quantify partly because of the multitude of indices proposed for this purpose. Indices aim to describe general properties of communities that allow us to compare different regions, taxa, and trophic levels. Therefore, they are of fundamental importance for environmental monitoring and conservation, although there is no consensus about which indices are more appropriate and informative. We tested several common diversity indices in a range of simple to complex statistical analyses in order to determine whether some were better suited for certain analyses than others. We used data collected around the focal plant Plantago lanceolata on 60 temperate grassland plots embedded in an agricultural landscape to explore relationships between the common diversity indices of species richness (S), Shannon's diversity (H'), Simpson's diversity (D1), Simpson's dominance (D2), Simpson's evenness (E), and Berger–Parker dominance (BP). We calculated each of these indices for herbaceous plants, arbuscular mycorrhizal fungi, aboveground arthropods, belowground insect larvae, and P. lanceolata molecular and chemical diversity. Including these trait-based measures of diversity allowed us to test whether or not they behaved similarly to the better studied species diversity. We used path analysis to determine whether compound indices detected more relationships between diversities of different organisms and traits than more basic indices. In the path models, more paths were significant when using H', even though all models except that with E were equally reliable. This demonstrates that while common diversity indices may appear interchangeable in simple analyses, when considering complex interactions, the choice of index can profoundly alter the interpretation of results. Data mining in order to identify the index producing the most significant results should be avoided, but simultaneously considering analyses using multiple indices can provide greater insight into the interactions in a system.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Despite plant secondary metabolites being major determinants of species interactions and ecosystem processes, their role in the maintenance of biodiversity has received little attention. In order to investigate the relationship between chemical and biological diversity in a natural ecosystem, we considered the impact of chemical diversity in individual Scots pine trees (Pinus sylvestris) on species richness of associated ground vegetation. Scots pine trees show substantial genetically determined constitutive variation between individuals in concentrations of a group of secondary metabolites, the monoterpenes. When the monoterpenes of particular trees were assessed individually, there was no relationship with species richness of associated ground flora. However, the chemical diversity of monoterpenes of individual trees was significantly positively associated with the species richness of the ground vegetation beneath each tree, mainly the result of an effect among the non-woody vascular plants. This correlation suggests that the chemical diversity of the ecosystem dominant species has an important role in shaping the biodiversity of the associated plant community. The extent and significance of this effect, and its underlying processes require further investigation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The modern approach to the development of new chemical entities against complex diseases, especially the neglected endemic diseases such as tuberculosis and malaria, is based on the use of defined molecular targets. Among the advantages, this approach allows (i) the search and identification of lead compounds with defined molecular mechanisms against a defined target (e.g. enzymes from defined pathways), (ii) the analysis of a great number of compounds with a favorable cost/benefit ratio, (iii) the development even in the initial stages of compounds with selective toxicity (the fundamental principle of chemotherapy), (iv) the evaluation of plant extracts as well as of pure substances. The current use of such technology, unfortunately, is concentrated in developed countries, especially in the big pharma. This fact contributes in a significant way to hamper the development of innovative new compounds to treat neglected diseases. The large biodiversity within the territory of Brazil puts the country in a strategic position to develop the rational and sustained exploration of new metabolites of therapeutic value. The extension of the country covers a wide range of climates, soil types, and altitudes, providing a unique set of selective pressures for the adaptation of plant life in these scenarios. Chemical diversity is also driven by these forces, in an attempt to best fit the plant communities to the particular abiotic stresses, fauna, and microbes that co-exist with them. Certain areas of vegetation (Amazonian Forest, Atlantic Forest, Araucaria Forest, Cerrado-Brazilian Savanna, and Caatinga) are rich in species and types of environments to be used to search for natural compounds active against tuberculosis, malaria, and chronic-degenerative diseases. The present review describes some strategies to search for natural compounds, whose choice can be based on ethnobotanical and chemotaxonomical studies, and screen for their ability to bind to immobilized drug targets and to inhibit their activities. Molecular cloning, gene knockout, protein expression and purification, N-terminal sequencing, and mass spectrometry are the methods of choice to provide homogeneous drug targets for immobilization by optimized chemical reactions. Plant extract preparations, fractionation of promising plant extracts, propagation protocols and definition of in planta studies to maximize product yield of plant species producing active compounds have to be performed to provide a continuing supply of bioactive materials. Chemical characterization of natural compounds, determination of mode of action by kinetics and other spectroscopic methods (MS, X-ray, NMR), as well as in vitro and in vivo biological assays, chemical derivatization, and structure-activity relationships have to be carried out to provide a thorough knowledge on which to base the search for natural compounds or their derivatives with biological activity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Embora haja homogeneidade nas características morfológicas na classe dos Latossolos, existe grande diversidade química na subsuperfície. Trabalhos indicam que a produção agrícola apresenta correlação significativa com atributos químicos de subsuperfície, que são mais estáveis que na camada arável, sujeita a alterações decorrentes da exploração agrícola. Pelo exposto, o presente estudo avaliou os efeitos dos atributos químicos de subsuperfície de Latossolos da região Centro-Sul do Brasil na produtividade agrícola dos três primeiros cortes de clones de cana-de-açúcar e da variedade RB72454. Utilizaram-se os dados de produtividade agrícola correspondentes ao período de 1993 a 1998. Os solos foram caracterizados sob o ponto de vista granulométrico e químico na profundidade entre 0,8 e 1,0 m e foram feitos estudos de correlação entre tais atributos e as médias de produtividade agrícola diária durante o ciclo dos clones de cada ensaio e da variedade RB72454 e análise de regressão múltipla, com as variáveis selecionadas pelo procedimento stepwise em função do R². As características químicas de subsuperfície dos Latossolos influenciaram na produtividade agrícola da cana-de-açúcar, principalmente no 3º corte. Para as médias dos clones, o modelo de produtividade do 3º corte em função de saturação por bases e fósforo, mostra R² = 0,31, ou seja, que 31% da variação de TCH dia-1 pode ser explicada por esses dois atributos. No caso da variedade RB72454, essa mesma variação no 3º corte é explicada em 47% pelos atributos soma de bases e teores de cálcio e matéria orgânica. As variações de produtividade de 1º e 2º cortes foram melhor explicadas pelo pHágua.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study describes the isolation and structural determination of two amides, isolated for the first time: N,4-dihydroxy-N-(2'-hydroxyethyl)-benzamide (0.019%) and N, 4-dihydroxy-N-(2'-hydroxyethyl)-benzeneacetamide (0.023%). These amides, produced by the red macroalgae Bostrychia radicans, had their structures assigned by NMR spectral data and MS analyses. In addition, this chemical study led to the isolation of cholesterol, heptadecane, squalene, trans-phytol, neophytadiene, tetradecanoic and hexadecanoic acids, methyl hexadecanoate and methyl 9-octadecenoate, 4-(methoxymethyl)-phenol, 4-hydroxybenzaldehyde, methyl 4-hydroxybenzeneacetate, methyl 2-hydroxy-3-(4-hydroxyphenyl)-propanoate, hydroquinone, methyl 4-hydroxymandelate, methyl 4-hydroxybenzoate, 4-hydroxybenzeneacetic acid and (4-hydroxyphenyl)-oxo-acetaldehyde. This is the first report concerning these compounds in B. radicans, contributing by illustrating the chemical diversity within the Rhodomelaceae family.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study describes the isolation and structural determination of two amides, isolated for the first time: N,4-dihydroxy-N-(2'-hydroxyethyl)-benzamide (0.019%) and N,4-dihydroxy-N-(2'-hydroxyethyl)-benzeneacetamide (0.023%). These amides, produced by the red macroalgae Bostrychia radicans, had their structures assigned by NMR spectral data and MS analyses. In addition, this chemical study led to the isolation of cholesterol, heptadecane, squalene, trans-phytol, neophytadiene, tetradecanoic and hexadecanoic acids, methyl hexadecanoate and methyl 9-octadecenoate, 4-(methoxymethyl)-phenol, 4-hydroxybenzaldehyde, methyl 4-hydroxybenzeneacetate, methyl 2-hydroxy-3-(4-hydroxyphenyl)-propanoate, hydroquinone, methyl 4-hydroxymandelate, methyl 4-hydroxybenzoate, 4-hydroxybenzeneacetic acid and (4-hydroxyphenyl)-oxo-acetaldehyde. This is the first report concerning these compounds in B. radicans, contributing by illustrating the chemical diversity within the Rhodomelaceae family.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Biodiversity, a multidimensional property of natural systems, is difficult to quantify partly because of the multitude of indices proposed for this purpose. Indices aim to describe general properties of communities that allow us to compare different regions, taxa, and trophic levels. Therefore, they are of fundamental importance for environmental monitoring and conservation, although there is no consensus about which indices are more appropriate and informative. We tested several common diversity indices in a range of simple to complex statistical analyses in order to determine whether some were better suited for certain analyses than others. We used data collected around the focal plant Plantago lanceolata on 60 temperate grassland plots embedded in an agricultural landscape to explore relationships between the common diversity indices of species richness (S), Shannon's diversity (H'), Simpson's diversity (D-1), Simpson's dominance (D-2), Simpson's evenness (E), and Berger-Parker dominance (BP). We calculated each of these indices for herbaceous plants, arbuscular mycorrhizal fungi, aboveground arthropods, belowground insect larvae, and P.lanceolata molecular and chemical diversity. Including these trait-based measures of diversity allowed us to test whether or not they behaved similarly to the better studied species diversity. We used path analysis to determine whether compound indices detected more relationships between diversities of different organisms and traits than more basic indices. In the path models, more paths were significant when using H', even though all models except that with E were equally reliable. This demonstrates that while common diversity indices may appear interchangeable in simple analyses, when considering complex interactions, the choice of index can profoundly alter the interpretation of results. Data mining in order to identify the index producing the most significant results should be avoided, but simultaneously considering analyses using multiple indices can provide greater insight into the interactions in a system.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

One of the simplest questions that can be asked about molecular diversity is how many organic molecules are possible in total? To answer this question, my research group has computationally enumerated all possible organic molecules up to a certain size to gain an unbiased insight into the entire chemical space. Our latest database, GDB-17, contains 166.4 billion molecules of up to 17 atoms of C, N, O, S, and halogens, by far the largest small molecule database reported to date. Molecules allowed by valency rules but unstable or nonsynthesizable due to strained topologies or reactive functional groups were not considered, which reduced the enumeration by at least 10 orders of magnitude and was essential to arrive at a manageable database size. Despite these restrictions, GDB-17 is highly relevant with respect to known molecules. Beyond enumeration, understanding and exploiting GDBs (generated databases) led us to develop methods for virtual screening and visualization of very large databases in the form of a “periodic system of molecules” comprising six different fingerprint spaces, with web-browsers for nearest neighbor searches, and the MQN- and SMIfp-Mapplet application for exploring color-coded principal component maps of GDB and other large databases. Proof-of-concept applications of GDB for drug discovery were realized by combining virtual screening with chemical synthesis and activity testing for neurotransmitter receptor and transporter ligands. One surprising lesson from using GDB for drug analog searches is the incredible depth of chemical space, that is, the fact that millions of very close analogs of any molecule can be readily identified by nearest-neighbor searches in the MQN-space of the various GDBs. The chemical space project has opened an unprecedented door on chemical diversity. Ongoing and yet unmet challenges concern enumerating molecules beyond 17 atoms and synthesizing GDB molecules with innovative scaffolds and pharmacophores.