913 resultados para chelation therapy
Resumo:
A major myonecrotic zinc containing metalloprotease `malabarin' with thrombin like activity was purified by the combination of gel permeation and anion exchange chromatography from T. malabaricus snake venom. MALDI-TOF analysis of malabarin indicated a molecular mass of 45.76 kDa and its N-terminal sequence was found to be Ile-Ile-Leu-Pro(Leu)-Ile-Gly-Val-Ile-Leu(Glu)-Thr-Thr. Atomic absorption spectral analysis of malabarin raveled the association of zinc metal ion. Malabarin is not lethal when injected i.p. or i.m. but causes extensive hemorrhage and degradation of muscle tissue within 24 hours. Sections of muscle tissue under light microscope revealed hemorrhage and congestion of blood vessel during initial stage followed by extensive muscle fiber necrosis with elevated levels of serum creatine kinase and lactate dehydrogenase activity. Malabarin also exhibited strong procoagulant action and its procoagulant action is due to thrombin like activity; it hydrolyzes fibrinogen to form fibrin clot. The enzyme preferentially hydrolyzes A alpha followed by B beta subunits of fibrinogen from the N-terminal region and the released products were identified as fibrinopeptide A and fibrinopeptide B by MALDI. The myonecrotic, fibrinogenolytic and subsequent procoagulant activities of malabarin was neutralized by specific metalloprotease inhibitors such as EDTA, EGTA and 1, 10-phenanthroline but not by PMSF a specific serine protease inhibitor. Since there is no antivenom available to neutralize local toxicity caused by T. malabaricus snakebite, EDTA chelation therapy may have more clinical relevance over conventional treatment.
Resumo:
Projeto de Pós-Graduação/Dissertação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Ciências Farmacêuticas
Resumo:
In this study, Chlorella vulgaris (CV) was examined for its chelating effects on the ability of bone marrow stromal cell layer to display myeloid progenitor cells in vitro in lead-exposed mice, using the long-term bone marrow culture (LTBMC). In addition, the levels of interleukin (IL)-6, an important hematopoietic stimulator, as well as the numbers of adherent and non-adherent cells were also investigated. Mice were gavage treated daily with a single 50 mg/kg dose of CV for 10 days, concomitant to continuous offering of 1300 ppm lead acetate in drinking water. We found that CV up-modulates the reduced ability of stromal cell layer to display myeloid progenitor cells in vitro in lead-exposed mice and restores both the reduced number of non-adherent cells and the ability of stromal cells from these mice to produce IL-6. Monitoring of lead poisoning demonstrated that CV treatment significantly reduced lead levels in blood and tissues, completely restored the normal hepatic ALA levels, decreased the abnormally high plasma ALA and partly recovered the liver capacity to produce porphyrins. These findings provide evidence for a beneficial use of CV for combination or alternative chelating therapy to protect the host from the damage induced by lead poisoning. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Nickel compounds have high potential risk for the health of populations and for this reason their toxic effects should be urgently established. To determine the effect of nickel monosulfide in the muscle at the injection site on pancreatic, hepatic, and osteogenic lesions and the potential therapeutic effect of Cu-Zn superoxide dismutase (SOD), male Wistar rats received single intramuscular injections of nickel monosulfide (NiS - 7 mg Ni2+/Kg). A group of these experimental rats were injected intraperitoneally, with a single weekly dose of SOD covalently linked to polyethylene glycol (SOD-PEG). Rats were sacrificed at 2, 4, 6, and 8 months after Ni2+ injection. Nickel monosulfide produced tumors at the injection site. The increased phospholipid, alanine transaminase (ALT), alkaline phosphatase (ALP), and amylase levels in serum, in absence of SOD-PEG, reflected the toxic effects on pancreatic, hepatic, and osteogenic tissues of rats. SOD activity was increased in serum of rats receiving SOD-PEG throughout the experiment, and no significant difference was observed in biochemical parameters of control and experimental rats in presence of SOD- PEG. Superoxide radical generated by Ni2+ is of primary importance in the development of tumors at the injection site. Superoxide anion (O2 -) is also an important toxic intermediate with respect to hepatic, pancreatic, and osteogenic injury, since SOD-PEG has a potential therapeutic effect.
Resumo:
Purpose: To assess the correlation between MRI findings of the pancreas with those of the heart and liver in patients with beta thalassemia; to compare the pancreas T2* MRI results with glucose and ferritin levels and labile plasma iron (LPI). Materials and methods: We retrospectively evaluated chronically transfused patients, testing glucose with enzymatic tests, serum ferritin with chemiluminescence, LPI with cellular fluorescence, and T2* MRI to assess iron content in the heart, liver, and pancreas. MRI results were compared with one another and with serum glucose, ferritin, and LPI. Liver iron concentration (LIC) was determined in 11 patients' liver biopsies by atomic absorption spectrometry. Results: 289 MRI studies were available from 115 patients during the period studied. 9.4% of patients had overt diabetes and an additional 16% of patients had impaired fasting glucose. Both pancreatic and cardiac R2* had predictive power (p < 0.0001) for identifying diabetes. Cardiac and pancreatic R2* were modestly correlated with one another (r(2) = 0.20, p < 0.0001). Both were weakly correlated with LIC (r(2) = 0.09, p < 0.0001 for both) and serum ferritin (r(2) = 0.14, p < 0.0001 and r(2) = 0.03, p < 0.02, respectively). None of the three served as a screening tool for single observations. There is a strong log-log, or power-law, relationship between ratio of signal intensity (SIR) values and pancreas R2* with an r(2) of 0.91. Conclusions: Pancreatic iron overload can be assessed by MRI, but siderosis in other organs did not correlate significantly with pancreatic hemosiderosis. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
A major myonecrotic zinc containing metalloprotease 'malabarin' with thrombin like activity was purified by the combination of gel permeation and anion exchange chromatography from T. malabaricus snake venom. MALDI-TOF analysis of malabarin indicated a molecular mass of 45.76 kDa and its N-terminal sequence was found to be Ile-Ile-Leu- Pro(Leu)-Ile-Gly-Val-Ile-Leu(Glu)-Thr-Thr. Atomic absorption spectral analysis of malabarin raveled the association of zinc metal ion. Malabarin is not lethal when injected i.p. or i.m. but causes extensive hemorrhage and degradation of muscle tissue within 24 hours. Sections of muscle tissue under light microscope revealed hemorrhage and congestion of blood vessel during initial stage followed by extensive muscle fiber necrosis with elevated levels of serum creatine kinase and lactate dehydrogenase activity. Malabarin also exhibited strong procoagulant action and its procoagulant action is due to thrombin like activity; it hydrolyzes fibrinogen to form fibrin clot. The enzyme preferentially hydrolyzes A? followed by B subunits of fibrinogen from the N-terminal region and the released products were identified as fibrinopeptide A and fibrinopeptide B by MALDI. The myonecrotic, fibrinogenolytic and subsequent procoagulant activities of malabarin was neutralized by specific metalloprotease inhibitors such as EDTA, EGTA and 1, 10-phenanthroline but not by PMSF a specific serine protease inhibitor. Since there is no antivenom available to neutralize local toxicity caused by T. malabaricus snakebite, EDTA chelation therapy may have more clinical relevance over conventional treatment.
Resumo:
BACKGROUND AND OBJECTIVES: The aim of this prospective, randomized, 1-year study was to compare the efficacy and safety of oral deferiprone (DFP) with those of combinations of parenteral desferrioxamine (DFO) with oral DFP. DESIGN AND METHODS: A total of 24 patients with thalassemia major were randomized to receive one of the following two treatments; DFP given at a daily dose of 75 mg/kg in combination with DFO (40-50 mg/kg twice weekly) (n=12) or as single agent (n=12). In addition, 12 patients treated with 40-50 mg/kg DFO 5 days weekly were included as a reference group without randomization. Changes in liver iron concentration (LIC) and serum ferritin (SF) were assessed; total iron excretion (TIE), urinary iron excretion (UIE) and iron balance were calculated. Cardiac function and toxicity were also examined. DESIGN AND METHODS: SF and LIC were significantly reduced after 1 year of combination therapy (p=0.01 and 0.07, respectively). A decrease of LIC was observed in all but one patient (87.5%) following the combination therapy but in only 42% of patients treated with DFP monotherapy. In the DFO reference group, a statistically significant decrease in LIC (p=0.01) associated with a substantial decrease in SF (p=0.08) was observed after 1 year. The combination regimen resulted in greater TIE compared to DFP monotherapy (p=0.08) and was the regimen associated with the highest iron balance compared to DFP monotherapy (p=0.04) or standard DFO treatment (p=0.006). INTERPRETATIONS AND CONCLUSIONS: The addition of subcutaneous DFO twice weekly to oral DFP 75 mg/kg is a highly efficacious and safe chelation therapy providing superior chelation activity to that of DFP and likely has an efficacy profile comparable to that of standard DFO.
Resumo:
BACKGROUND & AIMS Wilson disease is an autosomal recessive disorder that affects copper metabolism, leading to copper accumulation in liver, central nervous system, and kidneys. There are few data on long-term outcomes and survival from large cohorts; we studied these features in a well-characterized Austrian cohort of patients with Wilson disease. METHODS We analyzed data from 229 patients diagnosed with Wilson disease from 1961 through 2013; 175 regularly attended a Wilson disease outpatient clinic and/or their physicians were contacted for information on disease and treatment status and outcomes. For 53 patients lost during the follow-up period, those that died and reasons for their death were identified from the Austrian death registry. RESULTS The mean observation period was 14.8 ± 11.4 years (range, 0.5-52.0 years), resulting in 3116 patient-years. Of the patients, 61% presented with hepatic disease, 27% with neurologic symptoms, and 10% were diagnosed by family screening at presymptomatic stages. Patients with a hepatic presentation were diagnosed younger (21.2 ± 12.0 years) than patients with neurologic disease (28.8 ± 12.0; P < .001). In 2% of patients, neither symptoms nor onset of symptoms could be determined with certainty. Most patients stabilized (35%) or improved on chelation therapy (26% fully recovered, 24% improved), but 15% deteriorated; 8% required a liver transplant, and 7.4% died within the observation period (71% of deaths were related to Wilson disease). A lower proportion of patients with Wilson disease survived for 20 years (92%) than healthy Austrians (97%), adjusted for age and sex (P = .03). Cirrhosis at diagnosis was the best predictor of death (odds ratio, 6.8; 95% confidence interval, 1.5-31.03; P = .013) and need for a liver transplant (odds ratio, 07; 95% confidence interval, 0.016-0.307; P < .001). Only 84% of patients with cirrhosis survived 20 years after diagnosis (compared with healthy Austrians, P =.008). CONCLUSION Overall, patients who receive adequate care for Wilson disease have a good long-term prognosis. However, cirrhosis increases the risk of death and liver disease. Early diagnosis, at a precirrhotic stage, might increase survival times and reduce the need for a liver transplant.
Resumo:
Objective: To describe a series of patients with clinically significant lead poisoning. Methodology: A case series of nine patients with lead poisoning who required inpatient management, identified through a Clinical Toxicology Service. Results: Nine children presented with clinically significant lead poisoning. The median serum lead was 2.5 mumol/L (range 1.38-4.83). Eight of the children were exposed to lead-based paint, with seven due to dust from sanded lead paint during house renovations. Serial blood determinations suggested re-exposure in four of the patients, and in one of these patients the re-exposure was from a different source of lead. Eight of the patients required chelation therapy. Conclusions: Serious lead poisoning continues to occur and there appears to be complacency regarding the hazard posed by lead paint in old houses.
Resumo:
A series of meso-substituted tetra-cationic porphyrins, which have methyl and octyl substituents, was studied in order to understand the effect of zinc chelation and photosensitizer subcellular localization in the mechanism of cell death. Zinc chelation does not change the photophysical properties of the photosensitizers (all molecules studied are type II photosensitizers) but affects considerably the interaction of the porphyrins with membranes, reducing mitochondrial accumulation. The total amount of intracellular reactive species induced by treating cells with photosensitizer and light is similar for zinc-chelated and free-base porphyrins that have the same alkyl substituent. Zinc-chelated porphyrins, which are poorly accumulated in mitochondria, show higher efficiency of cell death with features of apoptosis (higher MTT response compared with trypan blue staining, specific acridine orange/ethidium bromide staining, loss of mitochondrial transmembrane potential, stronger cytochrome c release and larger sub-G1 cell population), whereas nonchelated porphyrins, which are considerably more concentrated in mitochondria, triggered mainly necrotic cell death. We hypothesized that zinc-chelation protects the photoinduced properties of the porphyrins in the mitochondrial environment.