996 resultados para chelating agent


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several routes and procedures have been used in these last years as an effort to achieve single-phase mesoscopic-size superconducting samples. In this paper, the effects of using citric acid (CA), tartaric acid (TA) and ethylenediaminetetraacetic acid (EDTA) as chelating agents and ethylene-glycol (EG) as polyhydroxy alcohol were studied in order to establish conditions to avoid the occurrence of BaCO(3) undesirable secondary phase in YBa(2)Cu(3)O(7-delta) (YBCO). Thermal evolution of intermediate compounds formed during the calcinations process by the use of different chelating agents was traced using thermogravimetric and spectroscopic methods. The obtained results indicated that the polymer breakdown of samples prepared using EDTA occurs at higher temperatures than others chelating agents and also reduces the occurrence of BaCO(3) secondary phase as studied by X-ray diffraction measurements. Furthermore, the magnetic response of the mesoscopic-size YBCO specimens obtained was verified showing that samples present different superconducting response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of solutions of 0.2% chitosan, 15% EDTA and 10% citric acid on the microhardness of root dentin was evaluated comparatively in this study. Thirteen sound human maxillary central incisors were selected and decoronated at the cementoenamel junction. Ten roots were set into rapid polymerization acrylic resin and the root/resin block was fitted to the cutting machine to obtain slices from the cervical third. The first slice was discarded and the second slice was divided into four quadrants. Each quadrant was used to construct a sample, so that 4 specimens were obtained from each root slice, being one for each chelating solution to be tested: 15% EDTA, 10% citric acid, 0.2% chitosan and distilled water (control). The specimens were exposed to 50 μL of the solution for 5 min, and then washed in distilled water. A microhardness tester (Knoop hardness) with a 10 g load was used for 15 s. Data were analyzed statistically by one-way ANOVA and Tukey-Kramer test (α=0.05). The other 3 roots had the canals instrumented and irrigated at the end of the biomechanical preparation with the test solutions, and then examined by scanning electron microscopy (SEM) for qualitative analysis. All solutions reduced the microhardness of root dentin in a way that was statistically similar to each other (p>0.05) but significantly different from the control (p>0.05). The SEM micrographs showed that the three solutions removed smear layer from the middle third of the root canal. In conclusion, 0.2% chitosan, 15% EDTA and 10% citric acid showed similar effects in reducing dentin microhardness.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Peptide mass mapping analysis, utilizing a regenerable enzyme microreactor with metal-ion chelated adsorption of enzyme, combined with matrix assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS) was developed. Different procedures from the conventional approaches were adopted to immobilize the chelator onto the silica supports, that is, the metal chelating agent of iminodiacetic acid (IDA) was reacted with glycidoxypropyltrimethoxysilane (GLYMO) before its immobilization onto the inner wall of the fused-silica capillary pretreated with NH4HF2. The metal ion of copper and subsequently enzyme was specifically adsorbed onto the surface to form the immobilized enzyme capillary microreactor, which was combined with MALDI-TOF-MS to apply for the mass mapping analysis of nL amounts of protein samples. The results revealed that the peptide mapping could routinely be generated from 0.5 pmol protein sample in 15 min at 50degreesC, even 20 fmol cytochrome c could be well digested and detected.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two native copper-containing amine oxidases (EC 1.4.3.21) have been isolated from Rhodococcus opacus and reveal phenotypic plasticity and catalytic activity with respect to structurally diverse natural and synthetic amines. Altering the amine growth substrate has enabled tailored and targeted oxidase upreg-ulation, which with subsequent treatment by precipitation, ion exchange and gel filtration, achieved a 90–150 fold purification. MALDI-TOF mass spectrometric and genomic analysis has indicated multiple gene activation with complex biodegradation pathways and regulatory mechanisms. Additional post-purification characterisation has drawn on the use of carbonyl reagent and chelating agent inhibitors. Michaelis–Menten kinetics for common aliphatic and aromatic amine substrates and several structural analogues demonstrated a broad specificity and high affinity with Michaelis constants (K M) ranging from 0.1 to 0.9 mM for C 1 –C 5 aliphatic mono-amines and <0.2 mM for a range of aromatic amines. Potential exploitation of the enzymatic versatility of the two isolated oxidases in biosensing and bioprocessing is discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A modification to the PVA-FX hydrogel whereby the chelating agent, xylenol orange, was partially bonded to the gelling agent, poly-vinyl alcohol, resulted in an 8% reduction in the post irradiation Fe3+ diffusion, adding approximately 1 hour to the useful timespan between irradiation and readout. This xylenol orange functionalised poly-vinyl alcohol hydrogel had an OD dose sensitivity of 0.014 Gy−1 and a diffusion rate of 0.133 mm2 h−1. As this partial bond yields only incremental improvement, it is proposed that more efficient methods of bonding xylenol orange to poly-vinyl alcohol be investigated to further reduce the diffusion in Fricke gels.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The laz gene of Neisseria meningitidis is predicted to encode a lipid-modified azurin (Laz). Laz is very similar to azurin, a periplasmic protein, which belongs to the copper-containing proteins in the cupredoxin superfamily. In other bacteria, azurin is an electron donor to nitrite reductase, an important enzyme in the denitrifying process. It is not known whether Laz could function as an electron transfer protein in this important pathogen. Laz protein was heterologously expressed in Escherichia coli and purified. Electrospray mass spectrometry indicated that the Laz protein contains one copper ion. Laz was shown to be redox-active in the presence of its redox center copper ion. When oxidized, Laz exhibits an intense blue colour and absorbs visible light around 626 nm. The absorption is lost when exposed to diethyldithiocarbamate, a copper chelating agent. Polyclonal antibodies were raised against purified Laz for detecting expression of Laz under different growth conditions and to determine the orientation of Laz on the outer membrane. The expression of Laz under microaerobic and microaerobic denitrifying conditions was slightly higher than that under aerobic conditions. However, the expression of Laz was similar between the wild type strain and an fnr mutant, suggesting that Fumarate/Nitrate reduction regulator (FNR) does not regulate the expression of Laz despite the presence of a partial FNR box upstream of the laz gene. We propose that some Laz protein is exposed on the outer membrane surface of N. meningitidis as the αLaz antibodies can increase killing by complement in a capsule deficient N. meningitidis strain, in a dose-dependent fashion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose A modification of the existing PVA-​FX hydrogel has been made to investigate the use of a functionalised polymer in a Fricke gel dosimetry system to decrease Fe3+ diffusion. Methods The chelating agent, xylenol orange, was chem. bonded to the gelling agent, polyvinyl alc. (PVA) to create xylenol orange functionalised PVA (XO-​PVA)​. A gel was created from the XO-​PVA (20​% w​/v) with ferrous sulfate (0.4 mM) and sulfuric acid (50 mM)​. Results This resulted in an optical d. dose sensitivity of 0.014 Gy-​1, an auto-​oxidn. rate of 0.0005 h-​1, and a diffusion rate of 0.129 mm2 h-​1; an 8​% redn. compared to the original PVA-​FX gel, which in practical terms adds approx. 1 h to the time span between irradn. and accurate read-​out. Conclusions Because this initial method of chem. bonding xylenol orange to polyvinyl alc. has inherently low conversion, the improvement on existing gel systems is minimal when compared to the drawbacks. More efficient methods of functionalising polyvinyl alc. with xylenol orange must be developed for this system to gain clin. relevance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The association of nucleoside triphosphate molecules and calcium ions with purified particles of mycobacteriophage I3 has been documented. The content of nucleoside triphosphate has been determined to be 118 molecules per phage particle by equilibrium dialysis against labelled ATP or 148 molecules per phage particle by the direct determination of labelled nucleoside triphosphate.The concentration of bound Ca2+ exhibited a high degree of variation between different batches, which may be due to the nonspecific binding of Ca2+ by the virus particles. However, the tightly bound Ca2+ not removable by dialysis against calciumspecific chelating agent, showed a constant value of 2985 atoms/phage particle.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A lithium-ion hybrid capacitor comprising of a battery type multi-component olivine (LiMn1/3Co1/3Ni1/3PO4) cathode and a capacitive type carbon negative electrode is reported. Olivine phosphate synthesized with chelating agent's polyvinylpyrrolidone (PVP) or triethanolamine (TEA) showed uniform carbon coating through in-situ process exhibiting a surface area 5.1 m(2)/g with porosity 0.02 cm(3)/g. The surface area for commercial carbon electrode was observed to be 1450 m(2)/g with high porosity 0.76 cm(3)/g. Galvanostatic charge/discharge cycling tests were conducted in the coin cells, olivine vs. Li, offering a cell voltage of 4.75 V vs. Li with a maximum specific capacitance of 125 F/g. In the case of olivine vs. carbon in a lithium-ion hybrid device delivered a high discharge capacitance of 86 F/g at a specific current of 0.12 A/g with a cycling retention of 53 F/g (38% loss) after 250 cycles. The obtained performance of PVP synthesized olivine material is manifested to uniform carbon coating and the trapped organic products that provide pathways for facile electrochemical reactions than their TEA counterparts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present study, we have synthesized Fe, Co and Ni doped BaTiO3 catalyst by a wet chemical synthesis method using oxalic acid as a chelating agent. The concentration of the metal dopant varies from 0 to 5 mol% in the catalysts. The physical and chemical properties of doped BaTiO3 catalysts were studied using various analytical methods such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), BET surface area and Transmission electron microscopy (TEM). The acidic strength of the catalysts was measured using a n-butylamine potentiometric titration method. The bulk BaTiO3 catalyst exhibits a tetragonal phase with the P4mm space group. A structural transition from tetrahedral to cubic phase was observed for Fe, Co and Ni doped BaTiO3 catalysts with an increase in doped metal concentration from 1 to 5 mol%. The particle sizes of the catalysts were calculated from TEM images and are in the range of 30-80 nm. All the catalysts were tested for the catalytic reduction of nitrobenzene to azoxybenzene. The BaTiO3 catalyst was found to be highly active and less selective compared to the doped catalysts which are active and highly selective towards azoxybenzene. The increase in selectivity towards azoxybenzene is due to an increase in acidic strength and reduction ability of the doped metal. It was also observed that the nature of the metal dopant and their content at the B-site has an impact on the catalytic reduction of nitrobenzene. The Co doped BaTiO3 catalyst showed better activity with only 0.5 mol% doping than Fe and Ni doped BaTiO3 catalysts with maximum nitrobenzene conversion of 91% with 78% selectivity to azoxybenzene. An optimum Fe loading of 2.5 mol% in BaTiO3 is required to achieve 100% conversion with 93% selectivity whereas Ni with 5 mol% showed a conversion of 93% and a azoxybenzene selectivity of 84%.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tuneable optical sensors have been developed to sense chemical stimuli for a range of applications from bioprocess and environmental monitoring to medical diagnostics. Here, we present a porphyrin-functionalised optical sensor based on a holographic grating. The holographic sensor fulfils two key sensing functions simultaneously: it responds to external stimuli and serves as an optical transducer in the visible region of the spectrum. The sensor was fabricated via a 6 nanosecond-pulsed laser (350 mJ, λ = 532 nm) photochemical patterning process that enabled a facile fabrication. A novel porphyrin derivative was synthesised to function as the crosslinker of a polymer matrix, the light-absorbing material, the component of a diffraction grating, as well as the cation chelating agent in the sensor. The use of this multifunctional porphyrin permitted two-step fabrication of a narrow-band light diffracting photonic sensing structure. The resulting structure can be tuned finely to diffract narrow-band light based on the changes in the fringe spacing within the polymer and the system's overall index of refraction. We show the utility of the sensor by demonstrating its reversible colorimetric tuneability in response to variation in concentrations of organic solvents and metal cations (Cu 2+ and Fe2+) in the visible region of the spectrum (λmax ≈ 520-680 nm) with a response time within 50 s. Porphyrin-functionalised optical sensors offer great promise in fields varying from environmental monitoring to biochemical sensing to printable optical devices. This journal is © the Partner Organisations 2014.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A simple hydrothermal method has been developed to synthesize monodisperse beta-NaLuF4 microplates in a large scale. The microcrystals have a perfect hexagonal shape with a diameter of about 5.2 mu m and a thickness of 300 nm. Trisodium citrate (Cit(3-)), which is introduced into the reaction mixture and acts as the chelating agent and shape modifier, plays a key role in fine-tuning the microstructures. The dominant adsorption of Cit(3-) onto the {0001} facets lowers the surface energy of these facets.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polyvinyl alcohol (PVA) was first used as chelating agent and metal nitrates as precursor of ferrite in the fabrication of nanocrystalline Ni0.65Zn0.35Cu0.1Fe1.9O4 particles by the sol-gel method. The thermal decomposition process of dried gel was studied by thermogravimetry (TG), differential thermal analysis (DTA) and infrared spectra (IR). The structural and magnetic properties of resultant particles were investigated by X-ray diffraction (XRD), transmission electron microscope (TEM), vibrating sample magnetometer (VSM) and Mossbauer spectroscopy. The dependence of the decomposition of dried gel, the formation of spinel structured NiZnCu ferrite, the sizes of annealed particles, the saturation magnetization and coercivity of annealed particles on annealing temperature is presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

MnZn-ferrite/SiO2 nanocomposites with different silica content were successfully fabricated by a novel modified sol-gel auto-combustion method using citric acid as a chelating agent and tetraethyl orthosilicate (TEOS) as the source of silica matrix. The auto-combustion nature of the dried gel was studied by X-ray diffraction (XRD), Infrared spectra (IR), thermogravimetry (TG) and differential thermal analysis (DTA). Transmission electron microscope (TEM) observation shows that the MnZn-ferrite particles are homogeneously dispersed in silica matrix after auto-combustion of the dried gels. The magnetic properties vary with the silica content. The transition from the ferromagnetic to paramagnetic state is observed by Mossbauer spectra measurement with the increasing silica content. Vibrating sample magnetometer (VSM) shows that the magnetic properties of Mn0.65Zn0.35Fe2O4/SiO2 nanocomposites strongly depend on the silica content.