944 resultados para character preprocessing
Resumo:
The objective of the study is to develop a hand written character recognition system that could recognisze all the characters in the mordern script of malayalam language at a high recognition rate
Resumo:
Machine downtime, whether planned or unplanned, is intuitively costly to manufacturing organisations, but is often very difficult to quantify. The available literature showed that costing processes are rarely undertaken within manufacturing organisations. Where cost analyses have been undertaken, they generally have only valued a small proportion of the affected costs, leading to an overly conservative estimate. This thesis aimed to develop a cost of downtime model, with particular emphasis on the application of the model to Australia Post’s Flat Mail Optical Character Reader (FMOCR). The costing analysis determined a cost of downtime of $5,700,000 per annum, or an average cost of $138 per operational hour. The second section of this work focused on the use of the cost of downtime to objectively determine areas of opportunity for cost reduction on the FMOCR. This was the first time within Post that maintenance costs were considered along side of downtime for determining machine performance. Because of this, the results of the analysis revealed areas which have historically not been targeted for cost reduction. Further exploratory work was undertaken on the Flats Lift Module (FLM) and Auto Induction Station (AIS) Deceleration Belts through the comparison of the results against two additional FMOCR analysis programs. This research has demonstrated the development of a methodical and quantifiable cost of downtime for the FMOCR. This has been the first time that Post has endeavoured to examine the cost of downtime. It is also one of the very few methodologies for valuing downtime costs that has been proposed in literature. The work undertaken has also demonstrated how the cost of downtime can be incorporated into machine performance analysis with specific application to identifying high costs modules. The outcome of this report has both been the methodology for costing downtime, as well as a list of areas for cost reduction. In doing so, this thesis has outlined the two key deliverables presented at the outset of the research.
Resumo:
Several approaches have been proposed to recognize handwritten Bengali characters using different curve fitting algorithms and curvature analysis. In this paper, a new algorithm (Curve-fitting Algorithm) to identify various strokes of a handwritten character is developed. The curve-fitting algorithm helps recognizing various strokes of different patterns (line, quadratic curve) precisely. This reduces the error elimination burden heavily. Implementation of this Modified Syntactic Method demonstrates significant improvement in the recognition of Bengali handwritten characters.
Resumo:
This chapter reports on research work that aims to overcome some limitations of conventional community engagement for urban planning. Adaptive and human-centred design approaches that are well established in human-computer interaction (such as personas and design scenarios) as well as creative writing and dramatic character development methods (such as the Stanislavsky System and the Meisner Technique) are yet largely unexplored in the rather conservative and long-term design context of urban planning. Based on these approaches, we have been trialling a set of performance based workshop activities to gain insights into participants’ desires and requirements that may inform the future design of apartments and apartment buildings in inner city Brisbane. The focus of these workshops is to analyse the behaviour and lifestyle of apartment dwellers and generate residential personas that become boundary objects in the cross-disciplinary discussions of urban design and planning teams. Dramatisation and embodied interaction of use cases form part of the strategies we employed to engage participants and elicit community feedback.
Resumo:
The effects of rapid development have increased pressures on these places exacerbated by the competition between two key industry sectors, commercial base and tourism development. This, in supplement with urbanisation and industrialisation, has posted a high demand for the uses of these spaces. The political scenario and lack of adaptation on ecological principles and public participations in its design approach have sparked stiff environmental, historical and cultural constraint towards its landscape character as well as the ecological system. Therefore, a holistic approach towards improving the landscape design process is extremely necessary to protect human well being, cultural, environmental and historical values of these places. Limited research also has been carried out to overcome this situation. This further has created an urgent need to explore better ways to improve the landscape design process of Malaysian heritage urban river corridor developments that encompass the needs and aspirations of the Malaysian multi-ethnic society without making any drastic changes to the landscape character of the rivers. This paper presents a methodology to develop an advanced Landscape Character Assessment (aLCA) framework for evaluating the landscape character of the places, derived from the perception of two keys yet oppositional stakeholders: urban design team and special interest public. The triangulation of subjectivist paradigm methodologies: the psychophysical approach; the psychological approach; and, the phenomenological approach will be employed. The outcome will be used to improve the present landscape design process for future development of these places. Unless a range of perspectives can be brought to bear on enhancing the form and function of their future development and management, urban river corridors in the Malaysian context will continue to decline.
Resumo:
Data preprocessing is widely recognized as an important stage in anomaly detection. This paper reviews the data preprocessing techniques used by anomaly-based network intrusion detection systems (NIDS), concentrating on which aspects of the network traffic are analyzed, and what feature construction and selection methods have been used. Motivation for the paper comes from the large impact data preprocessing has on the accuracy and capability of anomaly-based NIDS. The review finds that many NIDS limit their view of network traffic to the TCP/IP packet headers. Time-based statistics can be derived from these headers to detect network scans, network worm behavior, and denial of service attacks. A number of other NIDS perform deeper inspection of request packets to detect attacks against network services and network applications. More recent approaches analyze full service responses to detect attacks targeting clients. The review covers a wide range of NIDS, highlighting which classes of attack are detectable by each of these approaches. Data preprocessing is found to predominantly rely on expert domain knowledge for identifying the most relevant parts of network traffic and for constructing the initial candidate set of traffic features. On the other hand, automated methods have been widely used for feature extraction to reduce data dimensionality, and feature selection to find the most relevant subset of features from this candidate set. The review shows a trend toward deeper packet inspection to construct more relevant features through targeted content parsing. These context sensitive features are required to detect current attacks.