991 resultados para chalcophyllite, parnauite, sulfate, arsenate,


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two sulfate-reducing bacteria, which also reduce arsenate, were isolated; both organisms oxidized lactate incompletely to acetate. When using lactate as the electron donor, one of these organisms, Desulfomicrobium strain Ben-RB, rapidly reduced (doubling time = 8 h) 5.1 mM arsenate at the same time it reduced sulfate (9.6 mM). Sulfate reduction was not inhibited by the presence of arsenate. Arsenate could act as the terminal electron acceptor in minimal medium (doubling time = 9 h) in the absence of sulfate. Arsenate was reduced by a membrane-bound enzyme that is either a c-type cytochrome or is associated with such a cytochrome; benzyl-viologen- dependent arsenate reductase activity was greater in cells grown with arsenate/sulfate than in cells grown with sulfate only. The second organism, Desulfovibrio strain Ben-RA, also grew (doubling time = 8 h) while reducing arsenate (3.1 mM) and sulfate (8.3 mM) concomitantly. No evidence was found, however, that this organism is able to grow using arsenate as the terminal electron acceptor. Instead, it appears that arsenate reduction by the Desulfovibrio strain Ben-RA is catalyzed by an arsenate reductase that is encoded by a chromosomally-borne gene shown to be homologous to the arsC gene of the Escherichia coli plasmid, R773 ars system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel capillary electrophoresis method using capacitively coupled contactless conductivity detection is proposed for the determination of the biocide tetrakis(hydroxymethyl)phosphonium sulfate. The feasibility of the electrophoretic separation of this biocide was attributed to the formation of an anionic complex between the biocide and borate ions in the background electrolyte. Evidence of this complex formation was provided by (11) B NMR spectroscopy. A linear relationship (R(2) = 0.9990) between the peak area of the complex and the biocide concentration (50-900 μmol/L) was found. The limit of detection and limit of quantification were 15.0 and 50.1 μmol/L, respectively. The proposed method was applied to the determination of tetrakis(hydroxymethyl)phosphonium sulfate in commercial formulations, and the results were in good agreement with those obtained by the standard iodometric titration method. The method was also evaluated for the analysis of tap water and cooling water samples treated with the biocide. The results of the recovery tests at three concentration levels (300, 400, and 600 μmol/L) varied from 75 to 99%, with a relative standard deviation no higher than 9%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photo-Fenton process (Fe(2+)/Fe(3+), H(2)O(2), UV light) is one of the most efficient and advanced oxidation processes for the mineralization of the organic pollutants of industrial effluents and wastewater. The overall rate of the photo-Fenton process is controlled by the rate of the photolytic step that converts Fe(3+) back to Fe(2+). In this paper, the effect of sulfate or chloride ions on the net yield of Fe(2+) during the photolysis of Fe(3+) has been investigated in aqueous solution at pH 3.0 and 1.0 in the absence of hydrogen peroxide. A kinetic model based on the principal reactions that occur in the system fits the data for formation of Fe(2+) satisfactorily. Both experimental data and model prediction show that the availability of Fe(2+) produced by photolysis of Fe(3+) is inhibited much more in the presence of sulfate ion than in the presence of chloride ion as a function of the irradiation time at pH 3.0.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Changes in the proteoglycans glypican and syndecan-4 have been reported in several pathological conditions, but little is known about their expression in the heart during diabetes. The aim of this study was to investigate in vivo heart function changes and alterations in mRNA expression and protein levels of glypican-1 and syndecan-4 in cardiac and skeletal muscles during streptozotocin (STZ)-induced diabetes. Methods: Diabetes was induced in male Wistar rats by STZ administration. The rats were assigned to one of the following groups: control (sham injection), after 24 hours, 10 days, or 30 days of STZ administration. Echocardiography was performed in the control and STZ 10-day groups. Western and Northern blots were used to quantify protein and mRNA levels in all groups. Immunohistochemistry was performed in the control and 30-day groups to correlate the observed mRNA changes to the protein expression. Results: In vivo cardiac functional analysis performed using echocardiography in the 10-day group showed diastolic dysfunction with alterations in the peak velocity of early (E) diastolic filling and isovolumic relaxation time (IVRT) indices. These functional alterations observed in the STZ 10-day group correlated with the concomitant increase in syndecan-4 and glypican-1 protein expression. Cardiac glypican-1 mRNA and skeletal syndecan-4 mRNA and protein levels increased in the STZ 30-day group. On the other hand, the amount of glypican in skeletal muscle was lower than that in the control group. The same results were obtained from immunohistochemistry analysis. Conclusion: Our data suggest that membrane proteoglycans participate in the sequence of events triggered by diabetes and inflicted on cardiac and skeletal muscles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The establishment of an in vitro production (IVP) of embryo in swine allows the generation of embryos with the same quality as in vivo produced embryos with less costs and time. In order to achieve successful fertilization under normal circumstances in vivo, mammalian spermatozoa must first undergo capacitation and then acrosome reaction. The purpose of this study was compared the efficacious of IP/CFDA fluorescence and Coomassie Blue G (CB) staining to detect capacitated sperm cells in refrigerated and fresh semen. Morever, it was investigated the efficacious of caffeine and chondroitin sulphate to promote in vitro sperm capacitation and in vitro embryo produced (IVP) of swine embryos. Materials, Methods & Results: A sperm-rich fraction from ejaculate was obtained using the gloved-hand method and the gel-free fraction was separated using sterile gauze. The semen was diluted in BTS at a final concentration of 1.5 x 10(8) cells/mL. The sperm suspension was incubated for 2 h at 25 degrees C, refrigerated and maintained for 1 h at 15-18 degrees C (refrigerated group) or used immediately (fresh group). Sperm capacitation was assessed by IP/CFDA fluorescence and CB staining for both fresh and refrigerated semen. For PI/CFDA evaluation, a final solution containing 1.7 mM formaldehyde, 7.3 mM PI and 20 mM CFDA in 950 mu L saline was prepared. In the dark, 40 mu L PI/CFDA final solution was added to 10 mu L semen and after 8 min, slides were analyzed on epifluorescence microscopy. For CB evaluation, sperm cells were fixed in 4% paraformaldehyde for 10 min and centrifuged twice at 320 x g in ammonium acetate pH 9 for 8 min. A smear was made and stained with 2.75 mg/mL CB in solution containing 12.5% methanol, 25% glacial acetic acid and 62.5% water, for 2 min. The smear was washed in running water, air dried and sealed with Permount (R), diluted 2:1 in xilol to avoid staining oxidation. Our results showed that refrigeration did not affect sperm capacitation and comparing staining methods, the PI/CFDA combination was more efficient to detect capacitated sperm, when compared to CB staining. In experiment 2, we evaluated the effect of different incubation time (1 - 5 h) with chondroitin sulfate and caffeine on sperm capacitation. For in vitro fertilization, oocytes were obtained from slaughterhouse ovaries. Oocytes with a thick and intact cumulus oophurus layer and cytoplasm with homogenous granules were selected for in vitro maturation for 44 h. According to the results of experiment 2, it was used for in vitro fertilization refrigerated semen was capacitated with 50 mu g/mL chondroitin sulfate for 2 h or capacitated with 5 mu g/mL caffeine for 3 h. Six hours after insemination, cumulus oophorus cells were mechanically removed and oocytes were washed and incubated in microdrops of culture medium. Embryo development after fertilization with sperm capacitated with caffeine or chondroitin sulfate was evaluated on days 3, 5 and 7 of culture. No differences were observed in days 3 or 5 of in vitro culture. However, it was observed an increase on blastocyst rate on Day 7 of culture when caffeine was used as the capacitor agent. Discussion: Molecular basis of sperm capacitation is still poor understood. Sperm capacitation can occur in vitro spontaneously in defined media without addition of biological fluids. We observed that sperm capacitation increased as incubation period enlarged and it was observed using Coomassie blue G and PI/CFDA for fresh semen and for refrigerated semen. It can be concluded that the cooling of semen did not change their pattern of sperm capacitation and this is best assessed by IP/CFDA than by CB. In addition to the use of caffeine in sperm capacitation produces more blastocysts than the chondroitin sulfate after in vitro fertilization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Lipoprotein lipase (Lpl) acts on triglyceride-rich lipoproteins in the peripheral circulation, liberating free fatty acids for energy metabolism or storage. This essential enzyme is synthesized in parenchymal cells of adipose tissue, heart, and skeletal muscle and migrates to the luminal side of the vascular endothelium where it acts upon circulating lipoproteins. Prior studies suggested that Lpl is immobilized by way of heparan sulfate proteoglycans on the endothelium, but genetically altering endothelial cell heparan sulfate had no effect on Lpl localization or lipolysis. The objective of this study was to determine if extracellular matrix proteoglycans affect Lpl distribution and triglyceride metabolism. Methods and Findings: We examined mutant mice defective in collagen XVIII (Col18), a heparan sulfate proteoglycan present in vascular basement membranes. Loss of Col18 reduces plasma levels of Lpl enzyme and activity, which results in mild fasting hypertriglyceridemia and diet-induced hyperchylomicronemia. Humans with Knobloch Syndrome caused by a null mutation in the vascular form of Col18 also present lower than normal plasma Lpl mass and activity and exhibit fasting hypertriglyceridemia. Conclusions: This is the first report demonstrating that Lpl presentation on the lumenal side of the endothelium depends on a basement membrane proteoglycan and demonstrates a previously unrecognized phenotype in patients lacking Col18.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The asymmetric unit of the title compound, C(6)H(9)N(2)OS(2)(+)center dot-HSO(4)(-)center dot H(2)O, contains a heterocyclic cation, a hydrogen sulfate anion and a water molecule. There are strong hydrogen bonds between the hydrogen sulfate anions and water molecules, forming an infinite chain along the [010] direction, from which the cations are pendent. The steric, electronic and geometric features are compared with those of similar compounds. In this way, structural relationships are stated in terms of the influence of the sulfate group on the protonation of the heterocycle and on the tautomeric equilibrium in the solid state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the performance and biofilm characteristics of a full-scale anaerobic sequencing batch biofilm reactor (ASBBR; 20 m(3)) containing biomass immobilized on an inert support (mineral coal) for the treatment of industrial wastewater containing a high sulfate concentration. The ASBBR reactor was operated during 110 cycles (48 h each) at sulfate loading rates ranging from 6.9 to 62.4 kgSO(4)(2-)/cycle corresponding to sulfate concentrations of 0.58-5.2 gSO(4)(2-)/L. Domestic sewage and ethanol were utilized as electron donors for sulfate reduction. After 71 cycles the mean sulfate removal efficiency was 99%, demonstrating a high potential for biological sulfate reduction. The biofilm formed in the reactor occurred in two different patterns, one at the beginning of the colonization and the other of a mature biofilm. These different colonization patterns are due to the low adhesion of the microorganisms on the inert support in the start-up period. The biofilm population is mainly made up of syntrophic consortia among sulfate-reducing bacteria and methanogenic archaea such as Methanosaeta spp.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The removal of sulfate and organic matter was assessed in an ASBR, which treated wastewater containing 500 mg COD L(-1) (3 g COD L(-1) d(-1)) in 8 h-cycles at 30 degrees C. The wastewater was enriched with sulfate at [COD/SO(4)(2-]) ratios of 1.34, 0.67 and 0.34 (8.8,4.5 and 2.2 gSO(4)(2-) L(-1) d(-1)). For each COD/[SO(4)(2-)] ratio fill times used were: 10 min (batch), 3 and 6 h (fed-batch), achieving sulfate reduction of 30%, 72% and 72% (COD/[SO(4)(2-)] of 1.34); 25%, 58% and 55% (COD/[SO(4)(2-)] of 0.67) and 23%, 37% and 27% (COD/[SO(4)(2-)] of 0.34), respectively, and organic matter removal of 87%, 68% and 80% (COD/[SO(4)(2-)] of 1.34); 78%, 75% and 69% (COD/[SO(4)(2-)] of 0.67) and 85%, 84% and 83% (COD/[SO(4)(2-)] of 0.34), respectively. The results showed that fed-batch operation improved sulfate reduction, whereas organic matter removals were similar for batch and fed-batch operation. In addition, increase in sulfate loading in the fed-batch operation improved organic matter removal. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A pilot-scale (1.2 m(3)) anaerobic sequencing batch biofilm reactor (ASBBR) containing mineral coal for biomass attachment was fed with sulfate-rich wastewater at increasing sulfate concentrations. Ethanol was used as the main organic source. Tested COD/sulfate ratios were of 1.8 and 1.5 for sulfate loading rates of 0.65-1.90 kgSO(4)(2-)/cycle (48 h-cycle) or of 1.0 in the trial with 3.0 gSO(4)(2-) l(-1). Sulfate removal efficiencies observed in all trials were as high as 99%. Molecular inventories indicated a shift on the microbial composition and a decrease on species diversity with the increase of sulfate concentration. Beta-proteobacteria species affiliated with Aminomonas spp. and Thermanaerovibrio spp. predominated at 1.0 gSO(4)(2-) l(-1). At higher sulfate concentrations the predominant bacterial group was Delta-proteobacteria mainly Desulfovibrio spp. and Desulfomicrobium spp. at 2.0 gSO(4)(2-) l(-1), whereas Desulfurella spp. and Coprothermobacter spp. predominated at 3.0 gSO(4)(2-) l(-1). These organisms have been commonly associated with sulfate reduction producing acetate, sulfide and sulfur. Methanogenic archaea(Methanosaeta spp.)was found at 1.0 and 2.0 gSO(4)(2-) l(-1). Additionally, a simplified mathematical model was used to infer on metabolic pathways of the biomass involved in sulfate reduction. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the results from 92 cycles of an anaerobic sequencing batch biofilm reactor containing biomass immobilized on inert support (mineral coal) applied for the treatment of an industrial wastewater containing high sulfate concentration. The pilot-scale reactor, with a total volume of 1.2 m(3), was operated at sulfate loading rates ranging from 0.15 to 1.90 kgSO(4)(2-)/cycle (48 It - cycle) corresponding to sulfate concentrations of 0.25 to 3.0 gSO(4)(2-) l(-1). Domestic sewage and ethanol were utilized as electron donors for sulfate reduction. Influent sulfate concentrations were increased in order to evaluate the minimum COD/sulfate ratio at which high reactor performance could be maintained. The mean sulfate removal efficiency remained between the range of 88 to 92% at several sulfate concentrations. Temporal profiles along the 48 h cycles were carried out under stable operation at sulfate concentrations of 1.0, 2.0 and 3.0 gSO(4)(2-) l(-1). Sulfate removal reached 99% for cycle times of 15, 25, and 30 h, and the effluents sulfate concentrations were lower than 8 mgSO(4)(2-) l(-1). The results demonstrate the potential applicability of the anaerobic configuration for the biological treatment of sulfate-rich wastewaters. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main objective of this research was to evaluate the potential use of a bench-scale anaerobic sequencing batch biofilm reactor (ASBBR) containing mineral coal as inert support for removal Of Sulfide and organic matter effluents from an ASBBR (1.2 m(3)) utilized for treatment of sulfate-rich wastewater. The cycle time was 48 h, including the steps of feeding (2 h), reaction with continuous liquid recirculation (44 h) and discharge (2 h). COD removal efficiency was up to 90% and the effluents total sulfide concentrations (H(2)S, HS(-), S(2-)) remained in the range of 1.5 to 7.5 mg.l(-1) during the 50 days of operation (25 cycles). The un-ionized Sulfide and ionized sulfides were converted by biological process to elemental sulfur (S(0)) under oxygen limited conditions. The results obtained in the bench-scale reactor were used to design an ASBBR in pilot scale for use in post-treatment to achieve the emission standards (sulfide and COD) for sulfate reduction. The pilot-scale reactor, with a total volume of 0.43 m(3), the COD and total sulfide removal achieved 88% and 57%, respectively, for a cycle time of 48 h (70 days of operation or 35 cycles).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was to analyze the interaction effects between temperature, feed strategy and COD/[SO(4)(2-)] levels, maintaining the same ratio, on sulfate and organic matter removal efficiency from a synthetic wastewater. This work is thus a continuation of Archilha et al. (2010) who studied the effect of feed strategy at 30 degrees C using different COD/[SO] ratios and levels. A 3.7-L anaerobic sequencing batch reactor with recirculation of the liquid phase and which contained immobilized biomass on polyurethane foam (AnSBBR) was used to treat 2.0 L synthetic wastewater in 8 h cycles. The temperatures of 15, 22.5 and 30 degrees C with two feed strategies were assessed: (a) batch and (b) batch followed by fed-batch. In strategy (a) the reactor was fed in 10 min with 2 L wastewater containing sulfate and carbon sources. In strategy (b) 1.2 L wastewater (containing only the sulfate source) was fed during the first 10 min of the cycle and the remaining 0.8 L (containing only the carbon source) in 240 min. Based on COD/[SO(4)(2-)] = 1 and on the organic matter (0.5 and 1.5 gCOD/L) and sulfate (0.5 and 1.5 gSO(4)(2-)/L) concentrations, the sulfate and organic matter loading rates applied were 1.5 and 4.5 g/L.d, i.e., same COD/[SO(4)(2-)] ratio (=1) but different levels (1.5/1.5 and 4.5/4.5 gCOD/gSO(4)(2-)). When reactor feed was 1.5 gCOD/L.d and 1.5 gSO(4)(2-)/L.d, gradual feeding (strategy b) showed to favor sulfate and organic matter removal in the investigated temperature range, indicating improved utilization of the electron donor for sulfate reduction. Sulfate removal efficiencies were 87.9; 86.3 and 84.4%, and organic matter removal efficiencies 95.2; 86.5 and 80.8% at operation temperatures of 30; 22.5 and 15 degrees C, respectively. On the other hand, when feeding was 4.5 gCOD/L.d and 4.5 gSO(4)(2-)/L.d, gradual feeding did not favor sulfate removal, indicating that gradual feeding of the electron donor did not improve sulfate reduction. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biological sulfate reduction was studied in a laboratory-scale anaerobic sequential batch reactor (14 L) containing mineral coal for biomass attachment. The reactor was fed industrial wastewater with increasingly high sulfate concentrations to establish its application limits. Special attention was paid to the use of butanol in the sulfate reduction that originated from melamine resin production. This product was used as the main organic amendment to support the biological process. The reactor was operated for 65 cycles (48 h each) at sulfate loading rates ranging from 2.2 to 23.8 g SO(4)(2-)/cycle, which corresponds to sulfate concentrations of 0.25, 0.5,1.0, 2.0 and 3.0 g SW(4)(2-)L(-1). The sulfate removal efficiency reached 99% at concentrations of 0.25, 0.5 and 1.0 g SO(4)(2-)L(-1). At higher sulfate concentrations (2.0 and 3.0 g SO(4)(2-)L(-1)), the sulfate conversion remained in the range of 71-95%. The results demonstrate the potential applicability of butanol as the carbon source for the biological treatment of sulfate in an anaerobic batch reactor. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the microbial characteristics of the granular sludge in the presence of oxygen (3.0 +/- 0.7 mg O-2 1(-1)) were analyzed using molecular biology techniques. The granules were provided by an upflow anaerobic sludge blanket (UASB) operated over 469 days and fed with synthetic substrate. Ethanol and sulfate were added to obtain different COD/SO42- ratios (3.0, 2.0, and 1.6). The results of fluorescent in situ hybridization (FISH) analyses showed that archaeal cells, detected by the ARC915 probe, accounted for 77%, 84%, and 75% in the COD/SO42- ratios (3.0, 2.0, and 1.6, respectively). Methanosaeta sp. was the predominant acetoclastic archaea observed by optical microscopy and FISH analyses, and confirmed by sequencing of the excised bands of the DGGE gel with a similarity of 96%. The sulfate-reducing bacterium Desulfovibrio vulgaris subsp. vulgaris (similarity of 99%) was verified by sequencing of the DGGE band. Others identified microorganism were similar to Shewanella sp. and Desulfitobacterium hafniense, with similarities of 95% and 99%, respectively. These results confirmed that the presence of oxygen did not severely affect the metabolism of microorganisms that are commonly considered strictly anaerobic. We obtained mean efficiencies of organic matter conversion and sulfate reducing higher than 74%. (C) 2008 Elsevier Ltd. All rights reserved.