68 resultados para centrosome
Resumo:
In animal cells the centrosome is positioned at the cell centre in close association with the nucleus. The mechanisms responsible for this are not completely understood. Here, we report the first characterization of human TBCC-domain containing 1 (TBCCD1), a protein related to tubulin cofactor C. TBCCD1 localizes at the centrosome and at the spindle midzone, midbody and basal bodies of primary and motile cilia. Knockdown of TBCCD1 in RPE-1 cells caused the dissociation of the centrosome from the nucleus and disorganization of the Golgi apparatus. TBCCD1-depleted cells are larger, less efficient in primary cilia assembly and their migration is slower in wound-healing assays. However, the major microtubule-nucleating activity of the centrosome is not affected by TBCCD1 silencing. We propose that TBCCD1 is a key regulator of centrosome positioning and consequently of internal cell organization.
Resumo:
Besnoitia besnoiti and Toxoplasma gondii are two closely related parasites that interact with the host cell microtubule cytoskeleton during host cell invasion. Here we studied the relationship between the ability of these parasites to invade and to recruit the host cell centrosome and the Golgi apparatus. We observed that T. gondii recruits the host cell centrosome towards the parasitophorous vacuole (PV), whereas B. besnoiti does not. Notably, both parasites recruit the host Golgi apparatus to the PV but its organization is affected in different ways. We also investigated the impact of depleting and over-expressing the host centrosomal protein TBCCD1, involved in centrosome positioning and Golgi apparatus integrity, on the ability of these parasites to invade and replicate. Toxoplasma gondii replication rate decreases in cells over-expressing TBCCD1 but not in TBCCD1-depleted cells; while for B. besnoiti no differences were found. However, B. besnoiti promotes a reorganization of the Golgi ribbon previously fragmented by TBCCD1 depletion. These results suggest that successful establishment of PVs in the host cell requires modulation of the Golgi apparatus which probably involves modifications in microtubule cytoskeleton organization and dynamics. These differences in how T. gondii and B. besnoiti interact with their host cells may indicate different evolutionary paths.
Resumo:
Abstract: The centrosome is the major microtubule organizing center (MTOC) of most animal cells. As such, it is essential for a number of processes, including polarized secretion or bipolar spindle assembly. Hence, centrosome number needs to be controlled precisely in coordination with DNA replication. Cells early in the cell cycle contain one centrosome that duplicates during S-phase to give rise to two centrosomes that organize a bipolar spindle during mitosis. A failure in this process is likely to engage the spindle assembly checkpoint and threaten genome stability. Despite its importance for normal and uncontrolled proliferation the mechanisms underlying centrosome duplication are still unclear. The Caenorhabditis elegans embryo is well suited to study the mechanisms of centrosome duplication. It allows for the analysis of cellular processes with high temporal and spatial resolution. Gene identification and inactivation techniques are very powerful and a wide set of mutant and transgenic strains facilitates analysis. My thesis project consisted of characterizing three sas-genes: sas-4, sas-5 and sas-¬6. Embryos lacking these genes fail to form a bipolar spindle, hence their name (spindle assembly). I established that sas-4(RNAi) and sas-6(RNAi) embryos do not form daughter centrioles and thus do not duplicate their centrosomes. Furthermore, I showed that both proteins localize to the cytoplasm and are strikingly enriched at centrioles throughout the cell cycle. By performing fluorescent recovery after photobleaching (FRAP) experiments and differentially labeling centrioles, I established that both proteins are recruited to centrioles once per cell cycle when daughter centrioles form. In contrast, SAS-5, PLK-1 and SPD-2 shuttle permanently between the cytoplasm and centrioles. By showing that SAS-5 and SAS-6 interact in vivo, I established a functional relationship between the proteins. Testing the putative human homologue of SAS-6 (HsSAS-6) and a distant relative of SAS-4 (CPAP), I was able to show that these proteins are required for centrosome duplication in human cells. In addition I found that overexpression of GFP¬HsSAS-6 leads to formation of extra centrosomes. In conclusion, we identified and gained important insights into proteins required for centrosome duplication in C. elegans and in human cells. Thus, our work contributes to further elucidate an important step of cell division in normal and malignant tissues. Eventually, this may allow for the development of novel diagnostic or therapeutic reagents to treat cancer patients. Résumé: Le centrosome est le principal centre organisateur des microtubules dans les cellules animales. De ce fait, il est essentiel pour un certain nombre de processus, comme l'adressage polarisé ou la mise en place d'un fuseau bipolaire. Le nombre de centrosome doit être contrôlé de façon précise et en coordination avec la réplication de l'ADN. Au début du cycle cellulaire, les cellules n'ont qu'un seul centrosome qui se duplique au cours de la phase S pour donner naissance à deux centrosomes qui forment le fuseau bipolaire pendant la mitose. Des défauts dans ce processus déclencheront probablement le "checkpoint" d'assemblage du fuseau et menaceront la stabilité du génome. Malgré leurs importances pour la prolifération normale ou incontrôlée des cellules, les mécanismes gouvernant la duplication des centrosomes restent obscures. L'embryon de Caenorhabditis elegans est bien adapté pour étudier les mécanismes de duplication des centrosomes. Il permet l'analyse des processus cellulaires avec une haute résolution spatiale et temporelle. L'identification des gènes et les techniques d'inactivation sont très puissantes et de larges collections de mutants et de lignées transgéniques facilitent les analyses. Mon projet de thèse a consisté à caractérisé trois gènes: sas-4, sas-5 et sas-6. Les embryons ne possédant pas ces gènes ne forment pas de fuseaux bipolaires, d'où leur nom (spindle assembly). J'ai établi que les embryons sas-4(RNAi) et sas-6(RNAi) ne forment pas de centrioles fils, et donc ne dupliquent pas leur centrosome. De plus, j'ai montré que les deux protéines sont localisées dans le cytoplasme et sont étonnamment enrichies aux centrioles tout le long du cycle cellulaire. En réalisant des expériences de FRAP (fluorscence recovery after photobleaching) et en marquant différentiellement les centrioles, j'ai établi que ces deux protéines sont recrutées une fois par cycle cellulaire aux centrioles, au moment de la duplication. Au contraire, SAS-5, PLK-1 et SPD-2 oscillent en permanence entre le cytoplasme et les centrioles. En montrant que SAS-5 et SAS-6 interagissent in vivo, j'ai établi une relation fonctionnelle entre les deux protéines. En testant les homologues humains putatifs de SAS-6 (HsSAS-6) et de SAS-4 (CPAP), j'ai été capable de montrer que ces protéines étaient aussi requises pour la duplication des centrosomes dans les cellules humaines. De plus, j'ai montré que la surexpression de GFP-HsSAS-6 entrainait la formation de centrosomes surnuméraires. En conclusion, nous avons identifié et progressé dans la compréhension de protéines requises pour la duplication des centrosomes chez C. elegans et dans les cellules humaines. Ainsi, notre travail contribue à mieux élucider une étape importante du la division cellulaire dans les cellules normales et malignes. A terme, ceci devrait aider au développement de nouveaux diagnostics ou de traitements thérapeuthiques pour soigner les malades du cancer.
Resumo:
Summary: Adeno-associated virus type 2 (AAV2) is a small virus containing single-stranded DNA of approximately 4.7kb in size. Both ends of the viral genome are flanked with inverted terminal repeat sequences (ITRs), which serve as primers for viral replication. Previous work in our laboratory has shown that AAV2 DNA with ultraviolet radiation-generated crosslinks (UV-AAV2) provokes a DNA damage response in the host cell by mimicking a stalled replication fork. Infection of cells with UV-AAV2 leads to a p53-and Chk1-mediated cell cycle arrest at the G2/M border of the cell cycle. However, tumour cells lacking the tumour suppressor protein p53 cannot sustain this arrest and enter a prolonged impaired mitosis, the outcome of which is cell death. The aim of my thesis was to investigate how UV-inactivated AAV2 kilts p53-deficient cancer cells. I found that the UV-AAV2-induced DNA damage signalling induces centriole overduplication in infected cells. The virus is able to uncouple the centriole duplication cycle from the cell cycle, leading to amplified centrosome numbers. Chk1 colocalises with centrosomes in the infected cells and the centrosome overduplication is dependent on the presence of Chk1, as well as on the activities of ATR and Cdk kinases and on the G2 arrest. The UV-AAV2-induced DNA damage signalling inhibits the degradation of cyclin B 1 and securin by the anaphase promoting complex, suggesting that the spindle checkpoint is activated in these mitotic cells. Interference with the spindle checkpoint components Mad2 and BubR1 revealed that the UV-AAV2-provoked mitotic catastrophe occurs independently of spindle checkpoint function, This work shows that, in the p53 deficient cells, UV-AAV2 triggers mitotic catastrophe associated with a dramatic Chk1-dependent overduplication of centrioles and the consequent formation of multiple spindle poles in mitosis. Résumé Le virus associé à l'adénovirus type 2 (AAV2) est un petit virus contenant un simple brin d'ADN d'environ 4.7kb. Des expériences antérieures dans notre laboratoire ont montré que les liens intramoléculaires sur l'ADN de AAV2 provoqués paz l'irradiation aux ultraviolets (UV) ressemblent à une fourche de réplication bloquée, ce qui provoque une réponse aux dommages à l'ADN dans la cellule hôte. L'infection des cellules avec UV-AAV2 résulte en un arrêt du cycle cellulaire à la transition G2/M entraîné par les protéines ATR et Chk1. Cependant, les cellules tumorales auxquelles il manque le suppresseur de tumeur p53 ne peuvent pas tenir cet arrêt et entrent dans une mitose anormale et prolongée qui se terminera par la mort cellulaire. Le but de ma thèse était d'étudier comment l'AAV2 inactivé par l'irradiation UV tue les cellules cancéreuses n'ayant pas p53. Je montre ici que le signal de dommages à l'ADN induit par UV-AAV2 génère une surduplication des centrioles dans les cellules infectées. Le virus est capable de dissocier le cycle de duplication du centriole du cycle cellulaire ce qui crée un nombre amplifié de centrosomes. Chk1 est co-localisé avec le centrosome dans les cellules infectées et la swduplication du centrosome est dépendante de la présence de Chk1, de l'activité des kinases ATR et Cdk et de l'arrêt en G2 de la cellule. Le signal d'ADN endommagé induit par UV-AAV2 réprime la dégradation des protéines cycline B1 et securine par le complexe promoteur de l'anaphase (APC), ce qui suggère que le point de contrôle du fuseau mitotique est activé dans ces cellules en mitose. L'étude d'interférence avec des éléments du point de contrôle du fuseau mitotique, Mad2 et BubR1, a révélé que la catastrophe mitotique provoquée paz UV-AAV2 survient indépendamment du point de contrôle du fuseau mitotique. Ce travail montre que dans les cellules déficientes en p53, UV-AAV2 induit une catastrophe mitotique associée à une surduplication des centrioles dépendant de Chk1 et ayant pour conséquence dramatique la formation de multiples fuseaux mitotiques dans la cellule en mitose.
Resumo:
IκB kinase α (IKKα) is one kinase subunit of the IKK complex that is responsible for NF-κB activation. Previous studies have shown that IKKα determines mouse keratinocyte terminal differentiation independent of the NF-κB pathway. Accumulating evidence suggests that IKKα functions as a tumor suppressor in skin carcinogenesis; however, the downstream pathways mediating this function are largely unknown. By using primary cultured keratinocytes, we found that Ikkα-/- cells developed aneuploidy and underwent spontaneous immortalization and transformation while wild type cells underwent terminal differentiation in the same culture condition. Using proteomic analysis we identified nucleophosmin (NPM), a centrosome duplication regulator, as an IKKα substrate. We further demonstrated that IKKα interacted with NPM and colocalized with NPM on the centrosome, suggesting that NPM is a physiological substrate of IKKα. Loss of IKKα reduced centrosome-bound NPM and promoted abnormal centrosome amplification, which contributed to aneuploidy development. Detailed analysis revealed that ablation of IKKα target site serine-125 of NPM induced destabilization of NPM hexamers, disrupted NPM association with centrosomes, and resulted in abnormal centrosome amplification. Re-introduction of IKKα rescued the defect in Ikkα-/- keratinocytes. Thus, IKKα is required for maintaining proper centrosome duplication by phosphorylating NPM. ^ UV is the major etiological agent for human skin cancer and UV-induced mouse skin carcinogenesis is one of the most relevant experimental models for human skin carcinogenesis. Thus, we further evaluated IKKα function in UV-induced skin carcinogenesis in Ikkα+/- mice. We demonstrated that IKKα is also critical in UV skin carcinogenesis, as evidenced by increased tumor multiplicity and reduced tumor latency in Ikkα+/- mice after chronic UVB treatment. Reduced expression of IKKα decreased UV-induced apoptosis and promoted accumulation of P53 mutations in the epidermis. This indicates that IKKα is critical for UV-induced apoptosis in vivo and thus prevents mutation accumulation that is important for tumor development. ^ Together, these findings uncover previously unknown in vivo functions of IKKα in centrosome duplication and apoptosis, thus providing a possible mechanism of how loss of IKKα may contribute to skin carcinogenesis. ^
Resumo:
In several cell types, an intriguing correlation exists between the position of the centrosome and the direction of cell movement: the centrosome is located behind the leading edge, suggesting that it serves as a steering device for directional movement. A logical extension of this suggestion is that a change in the direction of cell movement is preceded by a reorientation, or shift, of the centrosome in the intended direction of movement. We have used a fusion protein of green fluorescent protein (GFP) and γ-tubulin to label the centrosome in migrating amoebae of Dictyostelium discoideum, allowing us to determine the relationship of centrosome positioning and the direction of cell movement with high spatial and temporal resolution in living cells. We find that the extension of a new pseudopod in a migrating cell precedes centrosome repositioning. An average of 12 sec elapses between the initiation of pseudopod extension and reorientation of the centrosome. If no reorientation occurs within approximately 30 sec, the pseudopod is retracted. Thus the centrosome does not direct a cell’s migration. However, its repositioning stabilizes a chosen direction of movement, most probably by means of the microtubule system.
Resumo:
Centrosomes and their associated microtubules direct events during mitosis and control the organization of animal cell structures and movement during interphase. The centrosome replicates during the cell cycle, directs the assembly of bipolar mitotic spindles, and plays an important role in maintaining the fidelity of cell division. Recently, tumor suppressors such as p53 and retinoblastoma protein pRB have been localized to the centrosome in a cell cycle-dependent manner. Immunofluorescence microscopy and analysis of isolated centrosomes now provide evidence that BRCA1 protein, a suppressor of tumorigenesis in breast and ovary, also is associated with centrosomes during mitosis. Our results indicate that BRCA1 localizes with the centrosome during mitosis and coimmunoprecipitates with γ-tubulin, a centrosomal component essential for nucleation of microtubules. Furthermore, γ-tubulin associates preferentially with a hypophosphorylated form of BRCA1.
Resumo:
Although microtubules (MTs) are generally thought to originate at the centrosome, a number of cell types have significant populations of MTs with no apparent centrosomal connection. The origin of these noncentrosomal MTs has been unclear. We applied kinetic analysis of MT formation in vivo to establish their mode of origin. Time-lapse fluorescence microscopy demonstrated that noncentrosomal MTs in cultured epithelial cells arise primarily by constitutive nucleation at, and release from, the centrosome. After release, MTs moved away from the centrosome and tended to depolymerize. Laser-marking experiments demonstrated that released MTs moved individually with their plus ends leading, suggesting that they were transported by minus end-directed motors. Released MTs were dynamic. The laser marking experiments demonstrated that plus ends of released MTs grew, paused, or shortened while the minus ends were stable or shortened. Microtubule release may serve two kinds of cellular function. Release and transport could generate the noncentrosomal MT arrays observed in epithelial cells, neurons, and other asymmetric, differentiated cells. Release would also contribute to polymer turnover by exposing MT minus ends, thereby providing additional sites for loss of subunits. The noncentrosomal population of MTs may reflect a steady-state of centrosomal nucleation, release, and dynamics.
Resumo:
Centrosome duplication and separation are of central importance for cell division. Here we provide a detailed account of this dynamic process in Dictyostelium. Centrosome behavior was monitored in living cells using a γ-tubulin–green fluorescent protein construct and correlated with morphological changes at the ultrastructural level. All aspects of the duplication and separation process of this centrosome are unusual when compared with, e.g., vertebrate cells. In interphase the Dictyostelium centrosome is a box-shaped structure comprised of three major layers, surrounded by an amorphous corona from which microtubules emerge. Structural duplication takes place during prophase, as opposed to G1/S in vertebrate cells. The three layers of the box-shaped core structure increase in size. The surrounding corona is lost, an event accompanied by a decrease in signal intensity of γ-tubulin–green fluorescent protein at the centrosome and the breakdown of the interphase microtubule system. At the prophase/prometaphase transition the separation into two mitotic centrosomes takes place via an intriguing lengthwise splitting process where the two outer layers of the prophase centrosome peel away from each other and become the mitotic centrosomes. Spindle microtubules are now nucleated from surfaces that previously were buried inside the interphase centrosome. Finally, at the end of telophase, the mitotic centrosomes fold in such a way that the microtubule-nucleating surface remains on the outside of the organelle. Thus in each cell cycle the centrosome undergoes an apparent inside-out/outside-in reversal of its layered structure.
Resumo:
Loss of genomic integrity is a defining feature of many human malignancies, including human papillomavirus (HPV)-associated preinvasive and invasive genital squamous lesions. Here we show that aberrant mitotic spindle pole formation caused by abnormal centrosome numbers represents an important mechanism in accounting for numeric chromosomal alterations in HPV-associated carcinogenesis. Similar to what we found in histopathological specimens, HPV-16 E6 and E7 oncoproteins cooperate to induce abnormal centrosome numbers, aberrant mitotic spindle pole formation, and genomic instability. The low-risk HPV-6 E6 and E7 proteins did not induce such abnormalities. Whereas the HPV-16 E6 oncoprotein has no immediate effects on centrosome numbers, HPV-16 E7 rapidly induces abnormal centrosome duplication. Thus our results suggest a model whereby HPV-16 E7 induces centrosome-related mitotic disturbances that are potentiated by HPV-16 E6.
Resumo:
Because centrosomes were enriched in the bile canaliculi fraction from the chicken liver through their association with apical membranes, we developed a procedure for isolation of centrosomes from this fraction. With the use of the centrosomes, we generated centrosome-specific monoclonal antibodies. Three of the monoclonal antibodies recognized an antigen of ∼90 kDa. Cloning of its cDNA identified this antigen as a chicken homologue of outer dense fiber 2 protein (Odf2), which was initially identified as a sperm outer dense fiber-specific component. Exogenously expressed and endogenous Odf2 were shown to be concentrated at the centrosomes in a microtubule-independent manner in various types of cells at both light and electron microscopic levels. Odf2 exhibited a cell cycle-dependent pattern of localization and was preferentially associated with the mother centrioles in G0/G1-phase. Toward G1/S-phase before centrosome duplication, it became detectable in both mother and daughter centrioles. In the isolated bile canaliculi and centrosomes, Odf2, in contrast to other centrosomal components, was highly resistant to KI extraction. These findings indicate that Odf2 is a widespread KI-insoluble scaffold component of the centrosome matrix, which may be involved in the maturation event of daughter centrioles.
Resumo:
This study describes a paternal effect on sperm aster size and microtubule organization during bovine fertilization. Immunocytochemistry using tubulin antibodies quantitated with confocal microscopy was used to measure the diameter of the sperm aster and assign a score (0-3) based on the degree of radial organization (0, least organized; 3, most organized). Three bulls (A-C) were chosen based on varying fertility (A, lowest fertility; C, highest fertility) as assessed by nonreturn to estrus after artificial insemination and in vitro embryonic development to the blastocyst stage. The results indicate a statistically significant bull-dependent difference in diameter of the sperm aster and in the organization of the sperm astral microtubules. Insemination from bull A resulted in an average sperm aster diameter of 101.4 microm (76.3% of oocyte diameter). This significantly differs (P < or = 0.0001) from the average sperm aster diameters produced after inseminations from bull B (78.2 microm; 60.8%) or bull C (77.9 microm; 57.8%), which themselves displayed no significant differences. The degree of radial organization of the sperm aster was also bull-dependent. Sperm asters organized by bull A-derived sperm had an average quality score of 1.8, which was higher than that of bull B (1.4; P < or = 0.0005) or bull C (1.2; P < or = 0.0001). Results with bulls B and C were also significantly different (P < or = 0.025). These results indicate that the paternally derived portion of the centrosome varies among males and that this variation affects male fertility, the outcome of early development, and, therefore, reproductive success.
Resumo:
Centrosomes in mammalian cells have recently been implicated in cytokinesis; however, their role in this process is poorly defined. Here, we describe a human coiled-coil protein, Cep55 (centrosome protein 55 kDa), that localizes to the mother centriole during interphase. Despite its association with gamma-TuRC anchoring proteins CG-NAP and Kendrin, Cep55 is not required for microtubule nucleation. Upon mitotic entry, centrosome dissociation of Cep55 is triggered by Erk2/Cdk1-dependent phosphorylation at S425 and S428. Furthermore, Cep55 locates to the midbody and plays a role in cytokinesis, as its depletion by siRNA results in failure of this process. S425/428 phosphorylation is required for interaction with Plk1, enabling phosphorylation of Cep55 at S436. Cells expressing phosphorylation-deficient mutant forms of Cep55 undergo cytokinesis failure. These results highlight the centrosome as a site to organize phosphorylation of Cep55, enabling it to relocate to the midbody to function in mitotic exit and cytokinesis.
Resumo:
Background: Chrysotile is considered less harmful to human health than other types of asbestos fibers. Its clearance from the lung is faster and, in comparison to amphibole forms of asbestos, chrysotile asbestos fail to accumulate in the lung tissue due to a mechanism involving fibers fragmentation in short pieces. Short exposure to chrysotile has not been associated with any histopathological alteration of lung tissue. Methods: The present work focuses on the association of small chrysotile fibers with interphasic and mitotic human lung cancer cells in culture, using for analyses confocal laser scanning microscopy and 3D reconstructions. The main goal was to perform the analysis of abnormalities in mitosis of fibers-containing cells as well as to quantify nuclear DNA content of treated cells during their recovery in fiber-free culture medium. Results: HK2 cells treated with chrysotile for 48 h and recovered in additional periods of 24, 48 and 72 h in normal medium showed increased frequency of multinucleated and apoptotic cells. DNA ploidy of the cells submitted to the same chrysotile treatment schedules showed enhanced aneuploidy values. The results were consistent with the high frequency of multipolar spindles observed and with the presence of fibers in the intercellular bridge during cytokinesis. Conclusion: The present data show that 48 h chrysotile exposure can cause centrosome amplification, apoptosis and aneuploid cell formation even when long periods of recovery were provided. Internalized fibers seem to interact with the chromatin during mitosis, and they could also interfere in cytokinesis, leading to cytokinesis failure which forms aneuploid or multinucleated cells with centrosome amplification.
Resumo:
Chrysotile is one of the six types of asbestos, and it is the only one that can still be commercialized in many countries. Exposure to other types of asbestos has been associated with serious diseases, such as lung carcinomas and pleural mesotheliomas. The association of chrysotile exposure with disease is controversial. However, in vitro studies show the mutagenic potential of chrysotile, which can induce DNA and cell damage. The present work aimed to analyze alterations in lung small cell carcinoma cultures after 48 h of chrysotile exposure, followed by 2, 4 and 8 days of recovery in fiber-free culture medium. Some alterations, such as aneuploid cell formation, increased number of cells in G2/M phase and cells in multipolar mitosis were observed even after 8 days of recovery. The presence of chrysotile fibers in the cell cultures was detected and cell morphology was observed by laser scanning confocal microscopy. After 4 and 8 days of recovery, only a few chrysotile fragments were present in some cells, and the cellular morphology was similar to that of control cells. Cells transfected with the GFP-tagged alpha-tubulin plasmid were treated with chrysotile for 24 or 48 h and cells in multipolar mitosis were observed by time-lapse microscopy. Fates of these cells were established: retention in metaphase, cell death, progression through M phase generating more than two daughter cells or cell fusion during telophase or cytokinesis. Some of them were related to the formation of aneuploid cells and cells with abnormal number of centrosomes.