956 resultados para cellular growth


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over recent years nitric oxide (NO) not only has appeared as an important endogenous signaling molecule in plants and as a mediator in many developmental and physiological processes, but has also received recognition as a plant hormone. The impressive recent achievements in elucidating the role of NO in plants have come about by the application of NO donors. The aim herein was to study the effects of the different NO donors, sodium nitroprusside (SNP) and the nitrosyl ethylenediaminetetraacetate ruthenium(II) ([Ru(NO)(Hedta)]) complex on cellular growth in embryogenic suspension cultures of Araucaria angustifolia. Appraisal of our data revealed that [Ru(NO)(Hedta)] stimulated about 60% of cellular growth in embryogenic suspension cultures of A. angustifolia, with results similar to those observed with the SNP donor. Nevertheless, application of the NO scavenger PTIO (2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) inhibited this cellular growth in both. Cellular growth was correlated with an increase in endogenous NO levels after 21 days of culture, especially in treatments with NO donors. Our results demonstrated that the [Ru(NO)Hedta] complex could possibly be used as a NO donor in plants. (C) 2010 Elsevier Ireland Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Helicobacter pylori, present in half of the world’s population, is a very successful pathogen. It can survive for decades in the human stomach with few obvious consequences to the host. However, it is also the cause of gastric diseases ranging from gastritis to ulcers to gastric cancer and has been classified a type 1 carcinogen by the World Health Organization. We have previously shown that phosphorylation of a 145-kDa protein and activation of signal transduction pathways are associated with the attachment of H. pylori to gastric cells. Here we identify the 145-kDa protein as the H. pylori CagA protein. We also show that CagA is necessary to induce a growth-factor-like phenotype (hummingbird) in host gastric cells similar to that induced by hepatocyte growth factor (HGF). Additionally, we identify a second cellular phenotype induced after attachment by H. pylori, which we call SFA (stress fiber associated). SFA is CagA independent and is produced by type I and type II H. pylori.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The positive effects of Myc on cellular growth and gene expression are antagonized by activities of another member of the Myc superfamily, Mad. Characterization of the mouse homolog of human mad on the structural level revealed that domains shown previously to be required in the human protein for anti-Myc repression, sequence-specific DNA-binding activity, and dimerization with its partner Max are highly conserved. Conservation is also evident on the biological level in that both human and mouse mad can antagonize the ability of c-myc to cooperate with ras in the malignant transformation of cultured cells. An analysis of c-myc and mad gene expression in the developing mouse showed contrasting patterns with respect to tissue distribution and developmental stage. Regional differences in expression were more striking on the cellular level, particularly in the mouse and human gastrointestinal system, wherein c-Myc protein was readily detected in immature proliferating cells at the base of the colonic crypts, while Mad protein distribution was restricted to the postmitotic differentiated cells in the apex of the crypts. An increasing gradient of Mad was also evident in the more differentiated subcorneal layers of the stratified squamous epithelium of the skin. Together, these observations support the view that both downregulation of Myc and accumulation of Mad may be necessary for progression of precursor cells to a growth-arrested, terminally differentiated state.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Tissue Engineering is a promising emerging field that studies the intrinsic regenerative potential of the human body and uses it to restore functionality of damaged organs or tissues unable of self-healing due to illness or ageing. In order to achieve regeneration using Tissue Engineering strategies, it is first necessary to study the properties of the native tissue and determine the cause of tissue failure; second, to identify an optimum population of cells capable of restoring its functionality; and third, to design and manufacture a cellular microenvironment in which those specific cells are directed towards the desired cellular functions. The design of the artificial cellular niche has a tremendous importance, because cells will feel and respond to both its biochemical and biophysical properties very differently. In particular, the artificial niche will act as a physical scaffold for the cells, allowing their three-dimensional spatial organization; also, it will provide mechanical stability to the artificial construct; and finally, it will supply biochemical and mechanical cues to control cellular growth, migration, differentiation and synthesis of natural extracellular matrix. During the last decades, many scientists have made great contributions to the field of Tissue Engineering. Even though this research has frequently been accompanied by vast investments during extended periods of time, yet too often these efforts have not been enough to translate the advances into new clinical therapies. More and more scientists in this field are aware of the need of rational experimental designs before carrying out complex, expensive and time-consuming in vitro and in vivo trials. This review highlights the importance of computer modeling and novel biofabrication techniques as critical key players for a rational design of artificial cellular niches in Tissue Engineering.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

miR-498 is a non-coding RNA located intergenically in 19q13.41. Due to its predicted targeting of several genes involved in control of cellular growth, we examined the expression of miR-498 in colon cancer cell lines and a large cohort of patients with colorectal adenocarcinoma. Two colon cancer cancer cell lines (SW480 and SW48) and one normal colonic epithelial cell line (FHC) were recruited. The expression of miR-498 was tested in these cell lines by using quantitative real-time polymerase chain reaction (qRT-PCR). Tissues from 80 patients with surgical resection of colorectum (60 adenocarcinomas and 20 non-neoplastic tissues) were tested for miR-498 expression by qRT-PCR. In addition, an exogenous miR-498 (mimic) was used to detect the miRNA׳s effects on cell proliferation and cell cycle events in SW480 using MTT calorimetric assay and flow cytometry respectively. The colon cancer cell lines showed reduced expression of miR-498 compared to a normal colonic epithelial cell line. Mimic driven over expression of miR-498 in the SW480 cell line resulted in reduced cell proliferation and increased proportions of G2-M phase cells. In tissues, miR-498 expression was too low to be detected in all colorectal adenocarcinoma compared to non-neoplastic tissues. This suggests that the down regulation of miR-498 in colorectal cancer tissues and the direct suppressive cellular effect noted in cancer cell lines implies that miR-498 has some direct or indirect role in the pathogenesis of colorectal adenocarcinomas.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We study the spectral characteristics of bovine serum albumin (BSA) protein conjugated single-wall carbon nanotubes (SWNTs), and quantify their uptake by macrophages. The binding of BSA onto the SWNT surface is found to change the protein structure and to increase the doping of the nanotubes. The G-band Raman intensity follows a well-defined power law for SWNT concentrations of up to 33 μg ml-1 in aqueous solutions. Subsequently, in vitro experiments demonstrate that incubation of BSA-SWNT complexes with macrophages affects neither the cellular growth nor the cellular viability over multiple cell generations. Using wide spot Raman spectroscopy as a fast, non-destructive method for statistical quantification, we observe that macrophages effectively uptake BSA-SWNT complexes, with the average number of nanotubes internalized per cell remaining relatively constant over consecutive cell generations. The number of internalized SWNTs is found to be ∼30 × 106 SWNTs/cell for a 60 mm-2 seeding density and ∼100 × 10 6 SWNTs/cell for a 200 mm-2 seeding density. Our results show that BSA-functionalized SWNTs are an efficient molecular transport system with low cytotoxicity maintained over multiple cell generations. © 2013 IOP Publishing Ltd.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

L’une des particularités fondamentales caractérisant les cellules végétales des cellules animales est la présence de la paroi cellulaire entourant le protoplaste. La paroi cellulaire joue un rôle primordial dans (1) la protection du protoplaste, (2) est impliquée dans les mécanismes de filtration et (3) est le lieu de maintes réactions biochimiques nécessaires à la régulation du métabolisme et des propriétés mécaniques de la cellule. Les propriétés locales d’élasticité, d’extensibilité, de plasticité et de dureté des composants pariétaux déterminent la géométrie et la forme des cellules lors des processus de différentiation et de morphogenèse. Le but de ma thèse est de comprendre les rôles que jouent les différents composants pariétaux dans le modelage de la géométrie et le contrôle de la croissance des cellules végétales. Pour atteindre cet objectif, le modèle cellulaire sur lequel je me suis basé est le tube pollinique ou gamétophyte mâle. Le tube pollinique est une protubérance cellulaire qui se forme à partir du grain de pollen à la suite de son contact avec le stigmate. Sa fonction est la livraison des cellules spermatiques à l’ovaire pour effectuer la double fécondation. Le tube pollinique est une cellule à croissance apicale, caractérisée par la simple composition de sa paroi et par sa vitesse de croissance qui est la plus rapide du règne végétal. Ces propriétés uniques font du tube pollinique le modèle idéal pour l’étude des effets à courts termes du stress sur la croissance et le métabolisme cellulaire ainsi que sur les propriétés mécaniques de la paroi. La paroi du tube pollinique est composée de trois composantes polysaccharidiques : pectines, cellulose et callose et d’une multitude de protéines. Pour comprendre les effets que jouent ces différents composants dans la régulation de la croissance du tube pollinique, j’ai étudié les effets de mutations, de traitements enzymatiques, de l’hyper-gravité et de la gravité omni-directionnelle sur la paroi du tube pollinique. En utilisant des méthodes de modélisation mathématiques combinées à de la biologie moléculaire et de la microscopie à fluorescence et électronique à haute résolution, j’ai montré que (1) la régulation de la chimie des pectines est primordiale pour le contrôle du taux de croissance et de la forme du tube et que (2) la cellulose détermine le diamètre du tube pollinique en partie sub-apicale. De plus, j’ai examiné le rôle d’un groupe d’enzymes digestives de pectines exprimées durant le développement du tube pollinique : les pectate lyases. J’ai montré que ces enzymes sont requises lors de l’initiation de la germination du pollen. J’ai notamment directement prouvé que les pectate lyases sont sécrétées par le tube pollinique dans le but de faciliter sa pénétration au travers du style.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Eukaryotic elongation factor 1A (eEF1A) is the only protein modified by ethanolamine phosphoglycerol (EPG). In mammals and plants, EPG is attached to conserved glutamate residues located in eEF1A domains II and III, whereas in the unicellular eukaryote, Trypanosoma brucei, a single EPG moiety is attached to domain III. A biosynthetic precursor of EPG and structural requirements for EPG attachment to T. brucei eEF1A have been reported, but the role of this unique protein modification in cellular growth and eEF1A function has remained elusive. Here we report, for the first time in a eukaryotic cell, a model system to study potential roles of EPG. By down-regulation of EF1A expression and subsequent complementation of eEF1A function using conditionally expressed exogenous eEF1A (mutant) proteins, we show that eEF1A lacking EPG complements trypanosomes deficient in endogenous eEF1A, demonstrating that EPG attachment is not essential for normal growth of T. brucei in culture.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The human DMTF1 (DMP1) transcription factor, a DNA binding protein that interacts with cyclin D, is a positive regulator of the p14ARF (ARF) tumor suppressor. Our earlier studies have shown that three differentially spliced human DMP1 mRNAs, α, β and γ, arise from the human gene. We now show that DMP1α, β and γ isoforms differentially regulate ARF expression and promote distinct cellular functions. In contrast to DMP1α, DMP1β and γ did not activate the ARF promoter, whereas only β resulted in a dose-dependent inhibition of DMP1α-induced transactivation of the ARF promoter. Ectopic expression of DMP1β reduced endogenous ARF mRNA levels in human fibroblasts. The DMP1β- and γ-isoforms share domains necessary for the inhibitory function of the β-isoform. That DMP1β may interact with DMP1α to antagonize its function was shown in DNA binding assays and in cells by the close proximity of DMP1α/β in the nucleus. Cells stably expressing DMP1β, as well as shRNA targeting all DMP1 isoforms, disrupted cellular growth arrest induced by serum deprivation or in PMA-derived macrophages in the presence or absence of cellular p53. DMP1 mRNA levels in acute myeloid leukemia samples, as compared to granulocytes, were reduced. Treatment of acute promyelocytic leukemia patient samples with all-trans retinoic acid promoted differentiation to granulocytes and restored DMP1 transcripts to normal granulocyte levels. Our findings imply that DMP1α- and β-ratios are tightly regulated in hematopoietic cells and DMP1β antagonizes DMP1α transcriptional regulation of ARF resulting in the alteration of cellular control with a gain in proliferation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Transforming growth factor β (TGFβ) family ligands initiate a cascade of events capable of modulating cellular growth and differentiation. The receptors responsible for transducing these cellular signals are referred to as the type I and type II TGFβ receptors. Ligand binding to the type II receptor results in the transphosphorylation and activation of the type I receptor. This heteromeric complex then propagates the signal(s) to downstream effectors. There is presently little data concerning the fate of TGFβ receptors after ligand binding, with conflicting reports indicating no change or decreasing cell surface receptor numbers. To address the fate of ligand-activated receptors, we have used our previously characterized chimeric receptors consisting of the ligand binding domain from the granulocyte/macrophage colony-stimulating factor α or β receptor fused to the transmembrane and cytoplasmic domain of the type I or type II TGFβ receptor. This system not only provides the necessary sensitivity and specificity to address these types of questions but also permits the differentiation of endocytic responses to either homomeric or heteromeric intracellular TGFβ receptor oligomerization. Data are presented that show, within minutes of ligand binding, chimeric TGFβ receptors are internalized. However, although all the chimeric receptor combinations show similar internalization rates, receptor down-regulation occurs only after activation of heteromeric TGFβ receptors. These results indicate that effective receptor down-regulation requires cross-talk between the type I and type II TGFβ receptors and that TGFβ receptor heteromers and homomers show distinct trafficking behavior.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Id family of helix–loop–helix (HLH) transcriptional regulatory proteins does not possess a basic DNA-binding domain and functions as a negative regulator of basic HLH transcription factors. Id proteins coordinate cell growth and differentiation pathways within mammalian cells and have been shown to regulate G1-S cell-cycle transitions. Although much recent data has implicated Id1 in playing a critical role in modulating cellular senescence, no direct genetic evidence has been reported to substantiate such work. Here we show that Id1-null primary mouse embryo fibroblasts undergo premature senescence despite normal growth profiles at early passage. These cells possess increased expression of the tumor-suppressor protein p16/Ink4a but not p19/ARF, and have decreased cyclin-dependent kinase (cdk) 2 and cdk4 kinase activity. We also show that Id1 is able to directly inhibit p16/Ink4a but not p19/ARF promoter activity via its HLH domain, and that Id1inhibits transcriptional activation at E-boxes within the p16/Ink4a promoter. Our data provide, to our knowledge, the first genetic evidence for a role for Id1 as an inhibitor of cellular senescence and suggest that Id1 functions to delay cellular senescence through repression of p16/Ink4a. Because epigenetic and genetic abrogation of p16/Ink4a function has been implicated in the evolution of several human malignancies, we propose that transcriptional regulation of p16/Ink4a may also provide a mechanism for the dysregulation of normal cellular growth controls during the evolution of human malignancies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cytokines regulate cell growth by inducing the expression of specific target genes. Using the differential display method, we have cloned a cytokine-inducible immediate early gene, DUB-1 (for deubiquitinating enzyme). DUB-1 is related to members of the UBP superfamily of deubiquitinating enzymes, which includes the oncoprotein Tre-2. A glutathione S-transferase-DUB-1 fusion protein cleaved ubiquitin from a ubiquitin-beta-galactosidase protein. When a conserved cysteine residue of DUB-1, required for ubiquitin-specific thiol protease activity, was mutated to serine (C60S), deubiquitinating activity was abolished. Continuous expression of DUB-1 from a steroid-inducible promoter induced growth arrest in the G1 phase of the cell cycle. Cells arrested by DUB-1 expression remained viable and resumed proliferation upon steroid withdrawal. Our results suggest that DUB-1 regulates cellular growth by modulating either the ubiquitin-dependent proteolysis or the ubiquitination state of an unknown growth regulatory factor(s).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The insulin-receptor substrate family plays important roles in cellular growth, signaling, and survival. Two new members of this family have recently been isolated: IRS5/Dok4 and IRS6/Dok5. This study examines the expression of IRS5/DOK4 in a panel of lung cancer cell lines and tumor specimens. The results demonstrate that expression of IRS5/DOK4 is frequently altered with both elevated and decreased expression in non-small-cell lung cancer (NSCLC) tumor specimens. The altered expression of IRS5/DOK4 observed in tumor samples is not due to aberrant methylation. In vitro cell culture studies demonstrate that treatment of NSCLC cell lines with the histone deacetylase inhibitor trichostatin A (TSA) upregulates IRS5/DOK4. This finding indicates that expression is regulated epigenetically at the level of chromatin remodeling. Chromatin immunoprecipitation experiments confirm that the IRS5/DOK4 promoter has enhanced histone hyperacetylation following treatments with TSA. Finally, hypoxia was demonstrated to downregulate IRS5/DOK4 expression. This expression was restored by TSA. The clinical relevance of altered IRS5/DOK4 expression in NSCLC requires fur ther evaluation.