971 resultados para cell volume


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plant cells are characterized by low water content, so the fraction of cell volume (volume fraction) in a vessel is large compared with other cell systems, even if the cell concentrations are the same. Therefore, concentration of plant cells should preferably be expressed by the liquid volume basis rather than by the total vessel volume basis. In this paper, a new model is proposed to analyze behavior of a plant cell culture by dividing the cell suspension into the biotic- and abiotic-phases, Using this model, we analyzed the cell-growth and the alkaloid production by Catharanthus roseus, Large errors in the simulated results were observed if the phase-segregation was not considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The impact of metals (Cd, Cr, Cu and Zn) on growth, cell volume and cell division of the freshwateralga Pseudokirchneriella subcapitata exposed over a period of 72 h was investigated. The algal cells wereexposed to three nominal concentrations of each metal: low (closed to 72 h-EC10values), intermediate(closed to 72 h-EC50values) and high (upper than 72 h-EC90values). The exposure to low metal concen-trations resulted in a decrease of cell volume. On the contrary, for the highest metal concentrations anincrease of cell volume was observed; this effect was particularly notorious for Cd and less pronouncedfor Zn. Two behaviours were found when algal cells were exposed to intermediate concentrations ofmetals: Cu(II) and Cr(VI) induced a reduction of cell volume, while Cd(II) and Zn(II) provoked an oppositeeffect. The simultaneous nucleus staining and cell image analysis, allowed distinguishing three phases inP. subcapitata cell cycle: growth of mother cell; cell division, which includes two divisions of the nucleus;and, release of four autospores. The exposure of P. subcapitata cells to the highest metal concentrationsresulted in the arrest of cell growth before the first nucleus division [for Cr(VI) and Cu(II)] or after thesecond nucleus division but before the cytokinesis (release of autospores) when exposed to Cd(II). Thedifferent impact of metals on algal cell volume and cell-cycle progression, suggests that different toxic-ity mechanisms underlie the action of different metals studied. The simultaneous nucleus staining andcell image analysis, used in the present work, can be a useful tool in the analysis of the toxicity of thepollutants, in P. subcapitata, and help in the elucidation of their different modes of action.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT. A dual-wavelength digital holographic microscope to measure absolute volume of living cells is proposed. The optical setup allows us to reconstruct two quantitative phase contrast images at two different wavelengths from a single hologram acquisition. When adding the absorbing dye fast green FCF as a dispersive agent to the extracellular medium, cellular thickness can be univocally determined in the full field of view. In addition to the absolute cell volume, the method can be applied to derive important biophysical parameters of living cells including osmotic membrane water permeability coefficient and the integral intracellular refractive index (RI). Further, the RI of transmembrane flux can be determined giving an indication about the nature of transported solutes. The proposed method is applied to cultured human embryonic kidney cells, Chinese hamster ovary cells, human red blood cells, mouse cortical astrocytes, and neurons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigated the regulation of carbohydrate metabolism and glucose uptake through changes in skeletal muscle cell volume. Using an established invitro isolated whole muscle model, soleus (SOL) and extensor digitorum longus (EDL) muscles were dissected from male rats and incubated in an organ bath containing Sigma medium-199 with 8 mM D-glucose altered to target osmolality (hypo-osmotic: HYPO, iso-osmotic: ISO, hyper-osmotic: HYPER; 190, 290, 400 mmol/kg). Muscles were divided into two groups; metabolite (MM) and uptake (MU). MM (N=48) were incubated for 60 minutes and were then immediately flash frozen. MU (N=24) were incubated for 30 minutes and then the extracellular fluid was exchanged for media containing ^H-glucose and ^'*C-mannitol and incubated for another 30 minutes. After the incubation, the muscles were freeze clamped. Results demonstrated a relative water decrease and increase in HYPER and HYPO, respectively. EDL and SOL glucose uptakes were found to be significantly greater in HYPER conditions. The HYPER condition resulted in significant alterations in muscle metabolite concentrations (lower glycogen, elevated lactate, and G-6-P) suggesting a catabolic cell state, and an increase in glycogen synthase transformation when compared to the HYPO group. In conclusion, skeletal muscle cell volume alters rates of glucose uptake with further alterations in muscle metabolites and glycogen synthase transformation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of the current investigation was to establish an in-l'itro skeletal muscle model to study acute alterations in resting skeletal muscle cell volume. Isolated. whole muscle (SOL and EDL) was dissected from Long Evans rats and incubated for 60 min in Sigma Medium-199 (resting tension (lg). bubbled with 95:5% 02:C02, 30 ± 2°C, and pH 7.4). Media osmolality was altered to simulate hypo-osmotic (190 ± 10 Osm) (HYPO) or hyper-osmotic conditions (400 ± 10 Osm) (HYPER) while an iso-osmotic condition (290± 1 0 Osm) (CON) served as a control (n= 17.19.17). Following incubation, relative muscle water content decreased with HYPER and increased with HYPO in both muscle types (p<0.05). The cross-sectional area of HYPO SOL type I and type II fibres increased (p<0.05) while the EDL type 11 fibre area decreased in HYPER and increascd from HYPO exposure. Furthermore, HYPER exposure in both muscles lead to decreased ATP and phosphocreatine (p<0.05) and increased creatine and lactate (p<0.05) compared to CON. This isolated skeletal muscle model proved viable and demonstrated that altering extracellular osmolality could cause acutc alterations in muscle water content and resting muscle metabolism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigated the regulation of carbohydrate metabolism through changes in skeletal muscle cell volume immediately post contraction and during recovery. Using an established in vitro isolated muscle strip model, soleus (SOL) and extensor digitorum longus (EDL) were dissected from male rats and incubated in an organ bath (perfused with 95% O2; 5% CO2, pH 7.4, temperature 25°C) containing medium- 199 altered to a target osmotic condition (iso-, hypo- or hyper-osmotic; 290, 1 80, 400 mmol/kg). Muscles were stimulated for 10 minutes (40 Hz SOL; 30 Hz EDL) and then either immediately flash frozen or allowed to recover for 20 minutes before subsequent metabolite and enzyme analysis. Results demonstrated a relative water decrease in HYPER vs. HYPOosmotic condition (n=8/group; p<0.05) regardless of muscle type. Specifically, the SOL HYPER condition had elevated metabolite concentrations after 10 minutes of stimulation in comparison to both HYPO and ISO (p<0.05), while EDL muscle did not show any significant difTerences between the HYPER or HYPO conditions. After 20 minutes of recovery, metabolic changes occurred in both SOL and EDL with the SOL HYPER condition showing greater relative changes in metabolite concentrations versus HYPO. The results of the current study have demonstrated that osmotic imbalance induces metabolic change within the skeletal muscle cell and muscle type may influence the mechanisms utilized for cell volume regulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN] Erythropoietin (Epo) has been suggested to affect plasma volume, and would thereby possess a mechanism apart from erythropoiesis to increase arterial oxygen content. This, and potential underlying mechanisms, were tested in eight healthy subjects receiving 5000 IU recombinant human Epo (rHuEpo) for 15 weeks at a dose frequency aimed to increase and maintain haematocrit at approximately 50%. Red blood cell volume was increased from 2933 +/- 402 ml before rHuEpo treatment to 3210 +/- 356 (P < 0.01), 3117 +/- 554 (P < 0.05), and 3172 +/- 561 ml (P < 0.01) after 5, 11 and 13 weeks, respectively. This was accompanied by a decrease in plasma volume from 3645 +/- 538 ml before rHuEpo treatment to 3267 +/- 333 (P < 0.01), 3119 +/- 499 (P < 0.05), and 3323 +/- 521 ml (P < 0.01) after 5, 11 and 13 weeks, respectively. Concomitantly, plasma renin activity and aldosterone concentration were reduced. This maintained blood volume relatively unchanged, with a slight transient decrease at week 11, such that blood volume was 6578 +/- 839 ml before rHuEpo treatment, and 6477 +/- 573 (NS), 6236 +/- 908 (P < 0.05), and 6495 +/- 935 ml (NS), after 5, 11 and 13 weeks of treatment. We conclude that Epo treatment in healthy humans induces an elevation in haemoglobin concentration by two mechanisms: (i) an increase in red cell volume; and (ii) a decrease in plasma volume, which is probably mediated by a downregulation of the rennin-angiotensin-aldosterone axis. Since the relative contribution of plasma volume changes to the increments in arterial oxygen content was between 37.9 and 53.9% during the study period, this mechanism seems as important for increasing arterial oxygen content as the well-known erythropoietic effect of Epo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has long been stated that the K(+)-Cl(-) cotransporters (KCCs) are activated during cell swelling through dephosphorylation of their cytoplasmic domains by a protein phosphatase (PP) but that other enzymes are involved by targeting this PP or the KCCs directly. To date, however, the role of signaling intermediates in KCC regulation has been deduced from indirect evidence rather than in vitro phosphorylation studies, and examined after simulation of ion transport through cell swelling or N-ethylmaleimide treatment. In this study, the oocyte expression system was used to examine the effects of changes in cell volume (C(VOL)) and intracellular [Cl(-)] ([Cl(-)](i)) on the activity and phosphorylation levels (P(LEV)) of KCC4, and determine whether these effects are mediated by PP1 or phorbol myristate acetate (PMA)-sensitive effectors. We found that (1) low [Cl(-)](i) or low C(VOL) leads to decreased activity but increased P(LEV), (2) high C(VOL) leads to increased activity but no decrease in P(LEV) and (3) calyculin A (Cal A) or PMA treatment leads to decreased activity but no increase in P(LEV). Thus, we have shown for the first time that one of the KCCs can be regulated through direct phosphorylation, that changes in [Cl(-)](i) or C(VOL) modify the activity of signaling enzymes at carrier sites, and that the effectors directly involved do not include a Cal A-sensitive PP in contrast to the widely held view. J. Cell. Physiol. 219: 787-796, 2009. (c) 2009 Wiley-Liss, Inc.