980 resultados para cell surface charge


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The minimum inhibitory concentration and post-antibiotic effects of an antimicrobial agent are parameters to be taken into consideration when determining its dosage schedules. The in vitro post-antibiotic effects on cell surface hydrophobicity and bacterial adherence were examined in one strain of group B streptococci. Exposure of the microorganism for 2 h at 37 °C to 1 x MIC of penicillin induced a PAE of 1.1 h. The cell surface charge of the Streptococcus was altered significantly during the post-antibiotic phase as shown by its ability to bind to xylene: hydrophobicity was decreased. Bacterial adherence to human buccal epithelial cells was also reduced. The results of the present investigation indicate that studies designed to determine therapeutic regimens should evaluate the clinical significance of aspects of bacterial physiology during the post-antibiotic period.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cell electrophoresis was used for determionation of the electrophoretic mobility (EPM) of epimastigo and trypamastigote forms of several isolates of Trypanosoma cruzi and some stocks of other members of the Schizotrypanum subgenus, such as T. dionisii, T. vespertilionis and T. myoti. The EPM of T. bruceli, T. rangeli, and T. conorhini was also determined. The results obtained show that the EPM values con be useful to distinguish the parasites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrochemical reactivity and structure properties of electrogenic bacteria, Geobacter sulfurreducens (Gs) were studied to explore the heterogeneous electron transfer at the bacteria/electrode interface using electrochemical and in-situ spectroscopic techniques. The redox behavior of Gs adsorbed on a gold electrode, which is modified with a ω-functionalized self-assembled monolayer (SAM) of alkanethiols, depends strongly on the terminal group. The latter interacts directly with outermost cytochromes embedded into the outer membrane of the Gs cells. The redox potential of bacterial cells bound electrostatically to a carboxyl-terminated SAM is close to that observed for bacteria attached to a bare gold electrode, revealing a high electronic coupling at the cell/SAM interface. The redox potentials of bacterial cells adsorbed on amino- and pyridyl-terminated SAMs are significantly different suggesting that the outermost cytochromes changes their conformation upon adsorption on these SAMs. No redox activity of Gs was found with CH3-, N(CH3)3+- and OH-terminated SAMs. Complementary in-situ spectroscopic studies on bacteria/SAMs/Au electrode assemblies were carried out to monitor structure changes of the bacterial cells upon polarization. Spectro-electrochemical techniques revealed the electrochemical turnover of the oxidized and reduced states of outer membrane cytochromes (OMCs) in Gs, providing evidence that the OMCs are responsible for the direct electron transfer to metal electrodes, such as gold or silver, during the electricity production. Furthermore, we observed spectroscopic signatures of the native structure of the OMCs and no conformational change during the oxidation/reduction process of the microorganisms. These findings indicate that the carboxyl-anchoring group provides biocompatible conditions for the outermost cytochromes of the Gs, which facilitate the heterogeneous electron transfer at the microorganism/electrode interface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is known that the nanoparticle-cell interaction strongly depends on the physicochemical properties of the investigated particles. In addition, medium density and viscosity influence the colloidal behaviour of nanoparticles. Here, we show how nanoparticle-protein interactions are related to the particular physicochemical characteristics of the particles, such as their colloidal stability, and how this significantly influences the subsequent nanoparticle-cell interaction in vitro. Therefore, different surface charged superparamagnetic iron oxide nanoparticles were synthesized and characterized. Similar adsorbed protein profiles were identified following incubation in supplemented cell culture media, although cellular uptake varied significantly between the different particles. However, positively charged nanoparticles displayed a significantly lower colloidal stability than neutral and negatively charged particles while showing higher non-sedimentation driven cell-internalization in vitro without any significant cytotoxic effects. The results of this study strongly indicate therefore that an understanding of the aggregation state of NPs in biological fluids is crucial in regards to their biological interaction(s).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of plasma proteins on the cellular uptake of lipophilic substrates has perplexed investigators for many years. We tested the hypothesis that an ionic interaction between the protein-ligand complex and hepatocyte surface may be responsible for supplying more ligand to the cell for uptake. The surface-charged groups on albumin were modified to yield proteins having a range of isoelectric points (ALB, ALBs, ALBm, ALBe had values of 4.8-5.0, 4.5-4.7, 3.0-3.5, 8.4-8.6, respectively). [H-3]-Palmitate uptake studies were performed with adult rat hepatocyte suspensions using similar unbound ligand fractions in the presence of the different binding proteins. Mass spectrometry, isoelectric focusing (pI), and heptane : water partitioning were used to determine protein molecular weight, pI, and protein-palmitate equilibrium binding constant, respectively. Hepatocyte [H-3]-palmitate clearance in the presence of ALBs and ALBm were significantly lower (p < 0.05) than ALB, whereas [H-3]-palmitate clearance in the presence of ALBe was significantly higher (p < 0.05) than ALB. The data were consistent with the notion that ionic interactions between extracellular protein-ligand complexes and the hepatocyte surface facilitate the uptake of long-chain fatty acids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The process of adhesion of three different strains of Trichomonas vaginalis to a polystyrene substrate was analysed. The process of adhesion was dependent on the time of incubation and the pH of the phosphate-buffered solution (PBS) in which the parasites were suspended. The highest indices of adhesion were observed after an incubation time of 60 min at pH 6.6. The adhesion index increased when the parasites were incubated in the presence of culture media or when Ca++ or Mg++ was added to the PBS solution, whereas cytochalasin B, trypsin or neuraminidase reduced adhesion. Incubation of the parasites in the presence of poly-L-lysine facilitated the process of adhesion. Incubation of the parasites or polystyrene beads in the presence of poly-L-lysine led to important changes in their surface charge.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heparan sulfate proteoglycans and their corresponding binding sites have been suggested to play an important role during the initial attachment of blastocysts to uterine epithelium and human trophoblastic cell lines to uterine epithelial cell lines. Previous studies on RL95 cells, a human uterine epithelial cell line, characterized a single class of cell surface heparin/heparan sulfate (HP/HS)-binding sites. Three major HP/HS-binding peptide fragments were isolated from RL95 cell surfaces by tryptic digestion and partial amino-terminal amino acid sequence from each peptide fragment was obtained. In the current study, using the approaches of reverse transcription-polymerase chain reaction and cDNA library screening, a novel cell surface $\rm\underline{H}$P/HS $\rm\underline{i}$nteracting $\rm\underline{p}$rotein (HIP) has been isolated from RL95 cells. The full-length cDNA of HIP encodes a protein of 259 amino acids with a calculated molecular weight of 17,754 Da and pI of 11.75. Transfection of HIP cDNA into NIH-3T3 cells demonstrated cell surface expression and a size similar to that of HIP expressed by human cells. Predicted amino acid sequence indicates that HIP lacks a membrane spanning region and has no consensus sites for glycosylation. Northern blot analysis detected a single transcript of 1.3 kb in both total RNA and poly(A$\sp+$) RNA. Examination of human cell lines and normal tissues using both Northern blot and Western blot analysis revealed that HIP is differentially expressed in a variety of human cell lines and normal tissues, but absent in some cell lines examined. HIP has about 80% homology, at the level of both mRNA and protein, to a rodent protein, designated as ribosomal protein L29. Thus, members of the L29 family may be displayed on cell surfaces where they participate in HP/HS binding events. Studies on a synthetic peptide derived from HIP demonstrate that HIP peptide binds HS/HP with high selectivity and has high affinity (Kd = 10 nM) for a subset of polysaccharides found in commercial HIP preparations. Moreover, HIP peptide also binds certain forms of cell surface, but not secreted or intracellular. HS expressed by RL95 and JAR cells. This peptide supports the attachment of several human trophoblastic cell lines and a variety of mammalian adherent cell lines in a HS-dependent fashion. Furthermore, studies on the subset of HP specifically recognized by HIP peptide indicate that this high-affinity HP (HA-HP) has a larger median MW and a greater negative charge density than bulk HP. The minimum size of oligosaccharide required to bind to HIP peptide with high affinity is a septa- or octasaccharide. HA-HP also quantitatively binds to antithrombin-III (AT-III) with high affinity, indicating that HIP peptide and AT-III may recognize the same or similar oligosaccharide structure(s). Furthermore, HIP peptide antagonizes HP action and promotes blood coagulation in both factor Xa- and thrombin-dependent assays. Finally, HA-HP recognized by HP peptide is highly enriched with anticoagulant activity relative to bulk HP. Collectively, these results demonstrate that HIP may play a role in the HP/HS-involved cell-cell and cell-matrix interactions and recognizes a motif in HP similar or identical to that recognized by AT-III and therefore, may modulate blood coagulation. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insulin potentiates N-methyl-d-aspartate receptors (NMDARs) in neurons and Xenopus oocytes expressing recombinant NMDARs. The present study shows that insulin induced (i) an increase in channel number times open probability (nPo) in outside-out patches excised from Xenopus oocytes, with no change in mean open time, unitary conductance, or reversal potential, indicating an increase in n and/or Po; (ii) an increase in charge transfer during block of NMDA-elicited currents by the open channel blocker MK-801, indicating increased number of functional NMDARs in the cell membrane with no change in Po; and (iii) increased NR1 surface expression, as indicated by Western blot analysis of surface proteins. Botulinum neurotoxin A greatly reduced insulin potentiation, indicating that insertion of new receptors occurs via SNARE-dependent exocytosis. Thus, insulin potentiation occurs via delivery of new channels to the plasma membrane. NMDARs assembled from mutant subunits lacking all known sites of tyrosine and serine/threonine phosphorylation in their carboxyl-terminal tails exhibited robust insulin potentiation, suggesting that insulin potentiation does not require direct phosphorylation of NMDAR subunits. Because insulin and insulin receptors are localized to glutamatergic synapses in the hippocampus, insulin-regulated trafficking of NMDARs may play a role in synaptic transmission and plasticity, including long-term potentiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cell surface properties of the basidiomycete yeast Cryptococcus neoformans were investigated with a combination of novel and well proven approaches. Non-specific cell adhesion forces, as well as exposed carbohydrate and protein moieties potentially associated with specific cellular interaction, were analysed. Experimentation and analysis employed cryptococcal cells of different strains, capsular status and culture age. Investigation of cellular charge by particulate microelectrophoresis revealed encapsulated yeast forms of C. neoformans manifest a distinctive negative charge regardless of the age of cells involved; in turn, the neutral charge of acapsulate yeasts confirmed that the polysaccharide capsule, and not the cell wall, was responsible for this occurrence. Hydrophobicity was measured by MATH and HICH techniques, as well as by the attachment of polystyrene microspheres. All three techniques, where applicable, found C. neoformans yeast to be consistently hydrophilic; this state varied little regardless of strain and culture age. Cell surface carbohydrates and protein were investigated with novel fluorescent tagging protocols, flow cytometry and confocal microscopy. Cell surface carbohydrate was identified by controlled oxidation in association with biotin hydrazide and fluorescein-streptavidin tagging. Marked amounts of carbohydrate were measured and observed on the cell wall surface of cryptococcal yeasts. Furthermore, tagging of carbohydrates with selective fluorescent lectins supported the identification, measurement and observation of substantial amounts of mannose, glucose and N-acetyl-glucosamine. Cryptococcal cell surface protein was identified using sulfo-NHS-biotin with fluorescein-streptavidin, and then readily quantified by flow cytometry. Confocal imaging of surface exposed carbohydrate and protein revealed common localised areas of vivid fluorescence associated with buds, bud scars and nascent daughter cells. Carbohydrate and protein fluorescence often varied between strains, culture age and capsule status of cells examined. Finally, extension of protein tagging techniques resulted in the isolation and extraction of two biotinylated proteins from the yeast cell wall surface of an acapsulate strain of C.neoformans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ticks are blood-feeding arthropods that secrete immunomodulatory molecules through their saliva to antagonize host inflammatory and immune responses. As dendritic cells (DCs) play a major role in host immune responses, we studied the effects of Rhipicephalus sanguineus tick saliva on DC migration and function. Bone marrow-derived immature DCs pre-exposed to tick saliva showed reduced migration towards macrophage inflammatory protein (MIP)-1 alpha, MIP-1 beta and regulated upon activation, normal T cell expressed and secreted (RANTES) chemokines in a Boyden microchamber assay. This inhibition was mediated by saliva which significantly reduced the percentage and the average cell-surface expression of CC chemokine receptor CCR5. In contrast, saliva did not alter migration of DCs towards MIP-3 beta, not even if the cells were induced for maturation. Next, we evaluated the effect of tick saliva on the activity of chemokines related to DC migration and showed that tick saliva per se inhibits the chemotactic function of MIP-1 alpha, while it did not affect RANTES, MIP-1 beta and MIP-3 beta. These data suggest that saliva possibly reduces immature DC migration, while mature DC chemotaxis remains unaffected. In support of this, we have analyzed the percentage of DCs on mice 48 h after intradermal inoculation with saliva and found that the DC turnover in the skin was reduced compared with controls. Finally, to test the biological activity of the saliva-exposed DCs, we transferred DCs pre-cultured with saliva and loaded with the keyhole limpet haemocyanin (KLH) antigen to mice and measured their capacity to induce specific T cell cytokines. Data showed that saliva reduced the synthesis of both T helper (Th)1 and Th2 cytokines, suggesting the induction of a non-polarised T cell response. These findings propose that the inhibition of DCs migratory ability and function may be a relevant mechanism used by ticks to subvert the immune response of the host. (c) 2007 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Study of surface electric charges of soil colloids helps in understanding the physicochemical phenomena that influence the capacity of retaining nutrients and their availability to plants. The structural charge (sigma(0), (min)), the variable charge (sigma(q, min)), and the organic matter (OM) charge (sigma(total) (OM)) of 12 tropical soils with contrasting mineralogies were evaluated based on the difference of selectivity for Cs(+) and Li(+) between the functional ionizable surfaces groups and the mineral 2:1 siloxane surface. Soils were divided into three groups: G1, soils with a predominance of kaolinite and gibbsite in the clay fraction; G2, soils with hydroxy-interlayered 2:1 minerals; and G3, soils with smectite but without hydroxy-interlayered 2:1 minerals. The Cs absorption method was efficient for detecting the charge components in tropical soils. The mineral structural charge contributed 11% and 16%, 28% and 31%, and 52% and 59% of total soil charge of A and B horizons of soils from groups G 1, G2, and G3, respectively. On the other hand, OM contributed 53% and 37%, 48% and 41%, and 21% and 20% of total charge for the same samples, respectively, In highly weathered soils of group G I and, to a lesser extent, in soils in group G2, surface charges depended mainly on their variable components, resulting from the OM (sigma(toal) (OM)), as well as from imperfections found in 1:1 minerals (sigma(q, min)). The importance of OM in determining the magnitude of electric charges in humid tropical soils is highlighted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The virulence of four Sporothrix schenckii isolates was compared in a murine model of sporotrichosis, together with the protein pattern of the yeast cell surface and the capacity to bind the extracellular matrix protein fibronectin. Virulence was determined by the mortality rate, fungal burden and histopathology. Two clinical isolates were more virulent for C57BL/6 mice, but no direct correlation was seen between virulence and the clinical or environmental origin of the isolates. The lowest virulence was observed for an isolate recovered from a patient with meningeal sporotrichosis. Although all isolates could effectively disseminate, the dissemination patterns were not similar. Using flow cytometry analysis, we investigated the interaction of all the strains with fibronectin, and showed that the binding capacity correlated with virulence. Western blot analysis of S. schenckii cell wall extracts revealed positive bands for fibronectin in the range of 3792 kDa. The 70 kDa adhesin was also recognized by a protective monoclonal antibody raised against a gp70 antigen of S. schenckii (mAb P6E7). Confocal microscopy confirmed the co-localization of fibronectin and mAb P6E7 on the yeast cell surface. To our knowledge, this is the first report identifying adhesins for fibronectin on the surface of this human pathogen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The innate immune system of insects consists of humoral and cellular components involved in the recognition of and responses to intruding foreign micro- or macroorganisms. Several molecules have been identified so far that recognize molecular patterns present on microorganisms, such as lipopolysaccharides, peptidoglycans and lipoteichonic acid. These molecules, acting as opsonins, trigger immune responses such as phagocytosis, nodule formation, melanization and encapsulation. Here, we investigated the role of calreticulin (CRT) present on the surface of Pieris rapae hemocytes in phagocytosis. Comparative phagocytosis assays using yeast cells showed that hemocytes from different insects exhibit significant variation in their phagocytosing potential and relative CRT involvement. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bites from the Loxosceles genus (brown spiders) cause severe clinical symptoms, Including dermonecrotic injury, hemorrhage, hemolysis, platelet aggregation and renal failure. Histological findings of dermonecrotic lesions in animals exposed to Loxosceles intermedia venom show numerous vascular alterations Study of the hemorrhagic consequences of the venom in endothelial cells has demonstrated that the degeneration of blood vessels results not only from degradation of the extracellular matrix molecule or massive leukocyte infiltration, but also from a direct and primary activity of the venom on endothelial cells. Exposure of an endothelial cell line in vitro to L. intermedia venom induce morphological alterations, such as cell retraction and disadhesion to the extracellular matrix. The aim of the present study was to investigate the interaction between the venom toxins and the endothelial cell surface and their possible internalization, in order to illuminate the information about the deleterious effect triggered by venom After treating endothelial cells with venom toxins, we observed that the venom Interacts with cell surface. Venom treatment also can cause a reduction of cell surface glycoconjugates When cells were permeabilized, it was possible to verify that some venom toxins were internalized by the endothelial cells The venom internalization involves endocytic vesicles and the venom was detected in the lysosomes. However, no damage to lysosomal integrity was observed, suggesting that the cytotoxic effect evoked by L interned:a venom on endothelial cells is not mediated by venom internalization (C) 2010 Elsevier Ltd. All rights reserved

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cell-surface proteoglycans have been known to be involved in many functions including interactions with components of the extracellular microenvironment, and act as co-receptors which bind and modify the action of various growth factors and cytokines. The purpose of this study was to determine the regulation by growth factors and cytokines on cell-surface proteoglycan gene expression in cultured human periodontal ligament (PDL) cells. Subconfluent, quiescent PDL cells were treated with various concentrations of serum, bFGF, PDGF-BB, TGF-beta1, IL-1 beta, and IFN-gamma. RT-PCR technique was used, complemented with Northern blot for syndecan-1, to examine the effects of these agents on the mRNA expression of five cell-surface proteoglycans (syndecan-1, syndecan-2, syndecan-4, glypican and betaglycan). Syndecan-1 mRNA levels increased in response to serum, bFGF and PDGF-BB, but decreased in response to TGF-beta1, IL-1 beta and IFN-gamma. In contrast, syndecan-2 mRNA levels were upregulated by TCF-beta1 and IL-1 beta stimulation, but remained unchanged with the other agents. Betaglycan gene expression decreased in response to serum, but was upregulated by TCF-beta1 and unchanged by the other stimulants. Additionally, syndecan-4 and glypican were not significantly altered in response to the regulator molecules studied, with the exception that glypican is decreased in response to IFN-gamma. These data demonstrate that the gene expression of the five cell-surface proteoglycans studied is differentially regulated in PDL cells lending support to the nation of distinct functions for these cell-surface proteoglycans. (C) 2001 Wiley-Liss, inc.