980 resultados para cell damage
Resumo:
Guttiferone-A (GA) is a natural occurring polyisoprenylated benzophenone with several reported pharmacological actions. We have assessed the protective action of GA on iron-induced neuronal cell damage by employing the PC12 cell line and primary culture of rat cortical neurons (PCRCN). A strong protection by GA, assessed by the 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carbox-anilide (XTT) assay, was revealed, with IC(50) values <1 mu M. GA also inhibited Fe(3+)-ascorbate reduction, iron-induced oxidative degradation of 2-deoxiribose, and iron-induced lipid peroxidation in rat brain homogenate, as well as stimulated oxygen consumption by Fe(2+) autoxidation. Absorption spectra and cyclic voltammograms of GA Fe(2+)/Fe(3+) complexes suggest the formation of a transient charge transfer complex between Fe(2+) and GA, accelerating Fe(2+) oxidation. The more stable Fe(3+) complex with GA would be unable to participate in Fenton-Haber Weiss-type reactions and the propagation phase of lipid peroxidation. The results show a potential of GA against neuronal diseases associated with iron-induced oxidative stress.
Resumo:
Objective: In this study, we determined the protective effect of isoflavones from Glycine max on human umbilical vein endothelial cell (ECV304) damage induced by hydrogen peroxide (H(2)O(2)) and on nitric oxide (NO) production. Methods: We studied the regulation of NO synthesis in cultured human endothelial cells by phytoestrogens contained in soy extracts in the presence or absence of ICI 182,780 or N(omega)-nitro-L-arginine methyl esther and determined the protective effect of these isoflavones on ECV304 damage induced by H(2)O(2). Results: We show that soy extracts activate NO synthesis in endothelial cells and protect against cell damage. Conclusions: In conclusion, soy isoflavones markedly protect ECV304 cells against H(2)O(2) damage and promote NO synthesizing. Therefore, these isoflavones call potentially act as an NO promoter and as an antioxidant.
Resumo:
Pilocarpine-induced (320 mg/kg, ip) status epilepticus (SE) in adult (2-3 months) male Wistar rats results in extensive neuronal damage in limbic structures. Here we investigated whether the induction of a second SE (N = 6) would generate damage and cell loss similar to that seen after a first SE (N = 9). Counts of silver-stained (indicative of cell damage) cells, using the Gallyas argyrophil III method, revealed a markedly lower neuronal injury in animals submitted to re-induction of SE compared to rats exposed to a single episode of pilocarpine-induced SE. This effect could be explained as follows: 1) the first SE removes the vulnerable cells, leaving behind resistant cells that are not affected by the second SE; 2) the first SE confers increased resistance to the remaining cells, analogous to the process of ischemic tolerance. Counting of Nissl-stained cells was performed to differentiate between these alternative mechanisms. Our data indicate that different neuronal populations react differently to SE induction. For some brain areas most, if not all, of the vulnerable cells are lost after an initial insult leaving only relatively resistant cells and little space for further damage or cell loss. For some other brain areas, in contrast, our data support the hypothesis that surviving cells might be modified by the initial insult which would confer a sort of excitotoxic tolerance. As a consequence of both mechanisms, subsequent insults after an initial insult result in very little damage regardless of their intensity.
Resumo:
Laser-assisted killing of gold nanoparticle targeted macrophages was investigated. Using pressure transient detection, flash photography and transmission electron microscopy (TEM) imaging, we studied the mechanism of single cell damage by vapor bubble formation around gold nanospheres induced by nanosecond laser pulses. The influence of the number of irradiating laser pulses and of particle size and concentration on the threshold for acute cell damage was determined. While the single pulse damage threshold is independent of the particle size, the threshold decreases with increasing particle size when using trains of pulses. The dependence of the cell damage threshold on the nanoparticle concentration during incubation reveals that particle accumulation and distribution inside the cell plays a key role in tissue imaging or cell damaging.
Resumo:
Aims Duchenne muscular dystrophy (DMD), a degenerative pathology of skeletal muscle, also induces cardiac failure and arrhythmias due to a mutation leading to the lack of the protein dystrophin. In cardiac cells, the subsarcolemmal localization of dystrophin is thought to protect the membrane from mechanical stress. The absence of dystrophin results in an elevated stress-induced Ca2+ influx due to the inadequate functioning of several proteins, such as stretch-activated channels (SACs). Our aim was to investigate whether transient receptor potential vanilloid channels type 2 (TRPV2) form subunits of the dysregulated SACs in cardiac dystrophy. Methods and results We defined the role of TRPV2 channels in the abnormal Ca2+ influx of cardiomyocytes isolated from dystrophic mdx mice, an established animal model for DMD. In dystrophic cells, western blotting showed that TRPV2 was two-fold overexpressed. While normally localized intracellularly, in myocytes from mdx mice TRPV2 channels were translocated to the sarcolemma and were prominent along the T-tubules, as indicated by immunocytochemistry. Membrane localization was confirmed by biotinylation assays. Furthermore, in mdx myocytes pharmacological modulators suggested an abnormal activity of TRPV2, which has a unique pharmacological profile among TRP channels. Confocal imaging showed that these compounds protected the cells from stress-induced abnormal Ca2+ signals. The involvement of TRPV2 in these signals was confirmed by specific pore-blocking antibodies and by small-interfering RNA ablation of TRPV2. Conclusion Together, these results establish the involvement of TRPV2 in a stretch-activated calcium influx pathway in dystrophic cardiomyopathy, contributing to the defective cellular Ca2+ handling in this disease.
Resumo:
Objective - The purpose of this study was to assess cardiac function and cell damage in intrauterine growth-restricted (IUGR) fetuses across clinical Doppler stages of deterioration. Study Design - One hundred twenty appropriate-for-gestational-age and 81 IUGR fetuses were classified in stages 1/2/3 according umbilical artery present/absent/reversed end-diastolic blood flow, respectively. Cardiac function was assessed by modified-myocardial performance index, early-to-late diastolic filling ratios, cardiac output, and cord blood B-type natriuretic peptide; myocardial cell damage was assessed by heart fatty acid–binding protein, troponin-I, and high-sensitivity C-reactive protein. Results - Modified-myocardial performance index, blood B-type natriuretic peptide, and early-to-late diastolic filling ratios were increased in a stage-dependent manner in IUGR fetuses, compared with appropriate-for-gestational-age fetuses. Heart fatty acid–binding protein levels were higher in IUGR fetuses at stage 3, compared with control fetuses. Cardiac output, troponin-I, and high-sensitivity C-reactive protein did not increase in IUGR fetuses at any stage. Conclusion - IUGR fetuses showed signs of cardiac dysfunction from early stages. Cardiac dysfunction deteriorates further with the progression of fetal compromise, together with the appearance of biochemical signs of cell damage.
Resumo:
For the first time, oxygen terminated cellulose carbon nanoparticles (CCN) was synthesised and applied in gene transfection of pIRES plasmid. The CCN was prepared from catalytic of polyaniline by chemical vapour deposition techniques. This plasmid contains one gene that encodes the green fluorescent protein (GFP) in eukaryotic cells, making them fluorescent. This new nanomaterial and pIRES plasmid formed π-stacking when dispersed in water by magnetic stirring. The frequencies shift in zeta potential confirmed the plasmid strongly connects to the nanomaterial. In vitro tests found that this conjugation was phagocytised by NG97, NIH-3T3 and A549 cell lines making them fluorescent, which was visualised by fluorescent microscopy. Before the transfection test, we studied CCN in cell viability. Both MTT and Neutral Red uptake tests were carried out using NG97, NIH-3T3 and A549 cell lines. Further, we use metabolomics to verify if small amounts of nanomaterial would be enough to cause some cellular damage in NG97 cells. We showed two mechanisms of action by CCN-DNA complex, producing an exogenous protein by the transfected cell and metabolomic changes that contributed by better understanding of glioblastoma, being the major finding of this work. Our results suggested that this nanomaterial has great potential as a gene carrier agent in non-viral based therapy, with low cytotoxicity, good transfection efficiency, and low cell damage in small amounts of nanomaterials in metabolomic tests.
Resumo:
Introduction: Recruitment maneuvers (RMs) seem to be more effective in extrapulmonary acute lung injury (ALI), caused mainly by sepsis, than in pulmonary ALI. Nevertheless, the maintenance of adequate volemic status is particularly challenging in sepsis. Since the interaction between volemic status and RMs is not well established, we investigated the effects of RMs on lung and distal organs in the presence of hypovolemia, normovolemia, and hypervolemia in a model of extrapulmonary lung injury induced by sepsis. Methods: ALI was induced by cecal ligation and puncture surgery in 66 Wistar rats. After 48 h, animals were anesthetized, mechanically ventilated and randomly assigned to 3 volemic status (n = 22/group): 1) hypovolemia induced by blood drainage at mean arterial pressure (MAP)approximate to 70 mmHg; 2) normovolemia (MAP approximate to 100 mmHg), and 3) hypervolemia with colloid administration to achieve a MAP approximate to 130 mmHg. In each group, animals were further randomized to be recruited (CPAP = 40 cm H(2)O for 40 s) or not (NR) (n = 11/group), followed by 1 h of protective mechanical ventilation. Echocardiography, arterial blood gases, static lung elastance (Est, L), histology (light and electron microscopy), lung wet-to-dry (W/D) ratio, interleukin (IL)-6, IL-1 beta, caspase-3, type III procollagen (PCIII), intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) mRNA expressions in lung tissue, as well as lung and distal organ epithelial cell apoptosis were analyzed. Results: We observed that: 1) hypervolemia increased lung W/D ratio with impairment of oxygenation and Est, L, and was associated with alveolar and endothelial cell damage and increased IL-6, VCAM-1, and ICAM-1 mRNA expressions; and 2) RM reduced alveolar collapse independent of volemic status. In hypervolemic animals, RM improved oxygenation above the levels observed with the use of positive-end expiratory pressure (PEEP), but increased lung injury and led to higher inflammatory and fibrogenetic responses. Conclusions: Volemic status should be taken into account during RMs, since in this sepsis-induced ALI model hypervolemia promoted and potentiated lung injury compared to hypo-and normovolemia.
Resumo:
Biochemical and hematimetric indicators of inflammation and cell damage were correlated with bilirubin and hepatic and pancreatic enzymes in 30 chronic male alcoholics admitted into psychiatric hospital for detoxification and treatment of alcoholism. Aspartate aminotransferase, alanine aminotransferase, gamma-glutamyltransferase, alkaline phosphatase, and total bilirubin were altered, respectively, in 90%, 63%, 87%, 23% and 23% of the cases. None of the indicators of inflammation (lactic dehydrogenase, altered in 16% of the cases; alpha-1 globulin, 24%; alpha-2 globulin, 88%; leucocyte counts, 28%) was correlated with alterations of bilirubin or liver enzymes. Lactic dehydrogenase was poorly sensitive for detection of hepatocytic or muscular damage. Alterations of alpha-globulins seemed to have been due more to alcohol metabolism-induced increase of lipoproteins than to inflammation. Among indicators of cell damage, serum iron, increased in 40% of the cases, seemed to be related to liver damage while creatine phosphokinase, increased in 84% of the cases, related to muscle damage. Hyperamylasemia was found in 20% of the cases and significantly correlated with levels of bilirubin, alkaline phosphatase and gamma-glutamyltransferase. It was indicated that injuries of liver, pancreas, salivary glands, and muscle occurred in asymptomatic or oligosymptomatic chronic alcoholics.
Resumo:
Rotation-mediated aggregating brain cell cultures at two different maturational stages (DIV 11 and DIV 20) were subjected for 1 or 2 hours to ischaemic conditions by transient immobilization (arrest of media circulation). During recovery, cell damage was evaluated by measuring changes in cell type-specific enzyme activities and total protein content. It was found that in immature cultures (DIV 11), immobilization for 1 or 2 hours did not affect the parameters measured. By contrast, at DIV 20, ischaemic conditions for 1 hour caused a pronounced decrease in the activities of glutamic acid decarboxylase and choline acetyltransferase. A significant decrease in these neuron-specific enzyme activities was found at post-ischaemic days 1-14, indicating immediate and irreversible neuronal damage. The activity of the astrocyte-specific enzyme, glutamine synthetase, was significantly increased at 4 days post-treatment; equal to control values at 6 days; and significantly decreased at 14 days after the ischaemic insult. Immobilization of DIV 20 cultures for 2 hours caused a drastic reduction in all the parameters measured at post-ischaemic day 6. Generally, the ischaemic conditions appeared to be more detrimental to neurons than to astrocytes, and GABAergic neurons were more affected than cholinergic neurons.
Resumo:
Trichomonas vaginalis and Tritrichomonas foetus are parasitic, flagellated protists that inhabit the urogenital tract of humans and bovines, respectively. T. vaginalis causes the most prevalent non-viral sexually transmitted disease worldwide and has been associated with an increased risk for human immunodeficiency virus-1 infection in humans. Infections by T. foetus cause significant losses to the beef industry worldwide due to infertility and spontaneous abortion in cows. Several studies have shown a close association between trichomonads and the epithelium of the urogenital tract. However, little is known concerning the interaction of trichomonads with cells from deeper tissues, such as fibroblasts and muscle cells. Published parasite-host cell interaction studies have reported contradictory results regarding the ability of T. foetus and T. vaginalis to interact with and damage cells of different tissues. In this study, parasite-host cell interactions were examined by culturing primary human fibroblasts obtained from abdominal biopsies performed during plastic surgeries with trichomonads. In addition, mouse 3T3 fibroblasts, primary chick embryo myogenic cells and L6 muscle cells were also used as models of target cells. The parasite-host cell cultures were processed for scanning and transmission electron microscopy and were tested for cell viability and cell death. JC-1 staining, which measures mitochondrial membrane potential, was used to determine whether the parasites induced target cell damage. Terminal deoxynucleotidyltransferase-mediated dUTP nick end labelling staining was used as an indicator of chromatin damage. The colorimetric crystal violet assay was performed to ana-lyse the cytotoxicity induced by the parasite. The results showed that T. foetus and T. vaginalis adhered to and were cytotoxic to both fibroblasts and muscle cells, indicating that trichomonas infection of the connective and muscle tissues is likely to occur; such infections could cause serious risks to the infected host.
Resumo:
Although Drosophila systemic immunity is extensively studied, little is known about the fly's intestine-specific responses to bacterial infection. Global gene expression analysis of Drosophila intestinal tissue to oral infection with the Gram-negative bacterium Erwinia carotovora revealed that immune responses in the gut are regulated by the Imd and JAK-STAT pathways, but not the Toll pathway. Ingestion of bacteria had a dramatic impact on the physiology of the gut that included modulation of stress response and increased stem cell proliferation and epithelial renewal. Our data suggest that gut homeostasis is maintained through a balance between cell damage due to the collateral effects of bacteria killing and epithelial repair by stem cell division. The Drosophila gut provides a powerful model to study the integration of stress and immunity with pathways associated with stem cell control, and this study should prove to be a useful resource for such further studies.
Resumo:
Microparticles are phospholipid vesicles shed mostly in biological fluids, such as blood or urine, by various types of cells, such as red blood cells (RBCs), platelets, lymphocytes, endothelial cells. These microparticles contain a subset of the proteome of their parent cell, and their ready availability in biological fluid has raised strong interest in their study, as they might be markers of cell damage. However, their small size as well as their particular physico-chemical properties makes them hard to detect, size, count and study by proteome analysis. In this review, we report the pre-analytical and methodological caveats that we have faced in our own research about red blood cell microparticles in the context of transfusion science, as well as examples from the literature on the proteomics of various kinds of microparticles.
Resumo:
ABSTRACTIn normal tissues, a balance between pro- and anti-angiogenic factors tightly controls angiogenesis. Alterations of this balance may have pathological consequences. For instance, concerning the retina, the vascular endothelial growth factor (VEGF) is a potent pro-angiogenic factor, and has been identified has a key player during ocular neovascularization implicated in a variety of retinal diseases. In the exudative form (wet-form) of age-related macular degeneration (AMD), neovascularizations occurring from the choroidal vessels are responsible for a quick and dramatic loss of visual acuity. In diabetic retinopathy and retinopathy of prematurity, sprouting from the retinal vessels leads to vision loss. Furthermore, the aging of the population, the increased- prevalence of diabetes and the better survival rate of premature infants will lead to an increasing rate of these conditions. In this way, anti-VEGF strategy represents an important therapeutic target to treat ocular neovascular disorders.In addition, the administration of Pigmented Epithelial growth factor, a neurotrophic and an anti- angiogenic factor, prevents photoreceptor cell death in a model of retinal degeneration induced by light. Previous results analyzing end point morphology reveal that the light damage (LD) model is used to mimic retinal degenerations arising from environmental insult, as well as aging and genetic disease such as advanced atrophic AMD. Moreover, light has been identified as a co-factor in a number of retinal diseases, speeding up the degeneration process. This protecting effect of PEDF in the LD retina raises the possibility of involvement of the balance between pro- and anti-angiogenic factors not only for angiogenesis, but also in cell survival and maintenance.The aim of the work presented here was to evaluate the importance of this balance in neurodegenerative processes. To this aim, a model of light-induced retinal degeneration was used and characterized, mainly focusing on factors simultaneously controlling neuron survival and angiogenesis, such as PEDF and VEGF.In most species, prolonged intense light exposure can lead to photoreceptor cell damage that can progress to cell death and vision loss. A protocol previously described to induce retinal degeneration in Balb/c mice was used. Retinas were characterized at different time points after light injury through several methods at the functional and molecular levels. Data obtained confirmed that toxic level of light induce PR cell death. Variations were observed in VEGF pathway players in both the neural retina and the eye-cup containing the retinal pigment epithelium (RPE), suggesting a flux of VEGF from the RPE towards the neuroretina. Concomitantly, the integrity of the outer blood-retinal-barrier (BRB) was altered, leading to extravascular albumin leakage from the choroid throughout the photoreceptor layer.To evaluate the importance of VEGF during light-induced retinal degeneration process, a lentiviral vector encoding the cDNA of a single chain antibody directed against all VEGF-A isoforms was developed (LV-V65). The bioactivity of this vector to block VEGF was validated in a mouse model of laser-induced choroidal neovascularization mediated by VEGF upregulation. The vector was then used in the LD model. The administration of the LV-V65 contributed to the maintenance of functional photoreceptors, which was assessed by ERG recording, visual acuity measurement and histological analyses. At the RPE level, the BRB integrity was preserved as shown by the absence of albumin leakage and the maintenance of RPE cell cohesion.These results taken together indicate that the VEGF is a mediator of light induced PR degeneration process and confirm the crucial role of the balance between pro- and anti-angiogenic factors in the PR cell survival. This work also highlights the prime importance of BRB integrity and functional coupling between RPE and PR cells to maintain the PR survival. VEGF dysregulation was already shown to be involved in wet AMD forms and our study suggests that VEGF dysregulation may also occur at early stages of AMD and could thus be a potential therapeutic target for several RPE related diseases.RESUMEDans les différents tissues de l'organisme, l'angiogenèse est strictement contrôlée par une balance entre les facteurs pro- et anti-angiogéniques. Des modifications survenant dans cette balance peuvent engendrer des conséquences pathologiques. Par exemple, concernant la rétine, le facteur de croissance de l'endothélium vasculaire (VEGF) est un facteur pro-angiogénique important. Ce facteur a été identifié comme un acteur majeur dans les néovascularisations oculaires et les processus pathologiques angiogéniques survenant dans l'oeil et responsables d'une grande variété de maladies rétiniennes. Dans la forme humide de la dégénérescence maculaire liée à l'âge (DMLA), la néovascularisation choroïdienne est responsable de la perte rapide et brutale de l'acuité visuelle chez les patients affectés. Dans la rétinopathie diabétique et celle lié à la prématurité, l'émergence de néovaisseaux rétiniens est la cause de la perte de la vision. Les néovascularisations oculaires représentent la principale cause de cécité dans les pays développés. De plus, l'âge croissant de la population, la progression de la prévalence du diabète et la meilleure survie des enfants prématurés mèneront sans doute à l'augmentation de ces pathologies dans les années futures. Dans ces conditions, les thérapies anti- angiogéniques visant à inhiber le VEGF représentent une importante cible thérapeutique pour le traitement de ces pathologies.Plusieurs facteurs anti-angiogéniques ont été identifiés. Parmi eux, le facteur de l'épithélium pigmentaire (PEDF) est à la fois un facteur neuro-trophique et anti-angiogénique, et l'administration de ce facteur au niveau de la rétine dans un modèle de dégénérescence rétinienne induite par la lumière protège les photorécepteurs de la mort cellulaire. Des études antérieures basées sur l'analyse morphologique ont révélé que les modifications survenant lors de la dégénération induite suite à l'exposition à des doses toxiques de lumière représente un remarquable modèle pour l'étude des dégénérations rétiniennes suite à des lésions environnementales, à l'âge ou encore aux maladies génétiques telle que la forme atrophique avancée de la DMLA. De plus, la lumière a été identifiée comme un co-facteur impliqué dans un grand nombre de maladies rétiniennes, accélérant le processus de dégénération. L'effet protecteur du PEDF dans les rétines lésées suite à l'exposition de des doses toxiques de lumière suscite la possibilité que la balance entre les facteurs pro- et anti-angiogéniques soit impliquée non seulement dans les processus angiogéniques, mais également dans le maintient et la survie des cellules.Le but de ce projet consiste donc à évaluer l'implication de cette balance lors des processus neurodégénératifs. Pour cela, un modèle de dégénération induite par la lumière à été utilisé et caractérisé, avec un intérêt particulier pour les facteurs comme le PEDF et le VEGF contrôlant simultanément la survie des neurones et l'angiogenèse.Dans la plupart des espèces, l'exposition prolongée à une lumière intense peut provoquer des dommages au niveau des cellules photoréceptrices de l'oeil, qui peut mener à leur mort, et par conséquent à la perte de la vision. Un protocole préalablement décrit a été utilisé pour induire la dégénération rétinienne dans les souris albinos Balb/c. Les rétines ont été analysées à différents moments après la lésion par différentes techniques, aussi bien au niveau moléculaire que fonctionnel. Les résultats obtenus ont confirmé que des doses toxiques de lumière induisent la mort des photorécepteurs, mais altèrent également la voie de signalisation du VEGF, aussi bien dans la neuro-rétine que dans le reste de l'oeil, contenant l'épithélium pigmentaire (EP), et suggérant un flux de VEGF provenant de ΙΈΡ en direction de la neuro-rétine. Simultanément, il se produit une altération de l'intégrité de la barrière hémato-rétinienne externe, menant à la fuite de protéine telle que l'albumine, provenant de la choroïde et retrouvée dans les compartiments extravasculaires de la rétine, telle que dans la couche des photorécepteurs.Pour déterminer l'importance et le rôle du VEGF, un vecteur lentiviral codant pour un anticorps neutralisant dirigée contre tous les isoformes du VEGF a été développé (LV-V65). La bio-activité de ce vecteur a été testé et validée dans un modèle de laser, connu pour induire des néovascularisations choroïdiennes chez la souris suite à l'augmentation du VEGF. Ce vecteur a ensuite été utilisé dans le modèle de dégénération induite par la lumière. Les résultats des électrorétinogrammes, les mesures de l'acuité visuelle et les analyses histologiques ont montré que l'injection du LV-V65 contribue à la maintenance de photorécepteurs fonctionnels. Au niveau de l'EP, l'absence d'albumine et la maintenance des jonctions cellulaires des cellules de l'EP ont démontré que l'intégrité de la barrière hémato-rétinienne externe est préservée suite au traitement.Par conséquent, tous les résultats obtenus indiquent que le VEGF est un médiateur important impliquée dans le processus de dégénération induit par la lumière et confirme le rôle cruciale de la balance entre les facteurs pro- et anti-angiogéniques dans la survie des photorécepteurs. Cette étude révèle également l'importance de l'intégrité de la barrière hémato-rétinienne et l'importance du lien fonctionnel et structurel entre l'EP et les photorécepteurs, essentiel pour la survie de ces derniers. Par ailleurs, Cette étude suggère que des dérèglements au niveau de l'équilibre du VEGF ne sont pas seulement impliqués dans la forme humide de la DMLA, comme déjà démontré dans des études antérieures, mais pourraient également contribuer et survenir dans des formes précoces de la DMLA, et par conséquent le VEGF représente une cible thérapeutique potentielle pour les maladies associées à des anomalies au niveau de l'EP.
Resumo:
Mitochondrial dysfunction, caspase activation and caspase-dependent DNA fragmentation are involved in cell damage in many tissues. However, differentiated cardiomyocytes repress the expression of the canonical apoptotic pathway and their death during ischemia is caspase-independent. The atypical BH3-only protein Bnip3 is involved in the process leading to caspase-independent DNA fragmentation in cardiomyocytes. However, the pathway by which DNA degradation ensues following Bnip3 activation is not resolved. To identify the mechanism involved, we analyzed the interdependence of Bnip3, Nix and EndoG in mitochondrial damage and DNA fragmentation during experimental ischemia in neonatal rat ventricular cardiomyocytes. Our results show that the expression of EndoG and Bnip3 increases in the heart throughout development, while the caspase-dependent machinery is silenced. TUNEL-positive DNA damage, which depends on caspase activity in other cells, is caspase-independent in ischemic cardiomyocytes and ischemia-induced DNA high and low molecular weight fragmentation is blocked by repressing EndoG expression. Ischemia-induced EndoG translocation and DNA degradation are prevented by silencing the expression of Bnip3, but not Nix, or by overexpressing Bcl-xL. These data establish a link between Bnip3 and EndoG-dependent, TUNEL-positive, DNA fragmentation in ischemic cardiomyocytes in the absence of caspases, defining an alternative cell death pathway in postmitotic cells.