955 resultados para cell cycle re-entry


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to the lack of regenerative capacity of the mammalian auditory epithelium, sensory hair cell loss results in permanent hearing deficit. Nevertheless, a population of tissue resident stem/progenitor cells has been recently described. Identification of methods to trigger their activity could lead to exploitation of their potential therapeutically. Here we validate the use of transgenic mice reporting cell cycle progression (FUCCI), and stemness (Lgr5-GFP), as a valuable tool to identify regulators of cell cycle re-entry of supporting cells within the auditory epithelium. The small molecule compound CHIR99021 was used to inhibit GSK3 activity. This led to a significant increase in the fraction of proliferating sphere-forming cells, labeled by the FUCCI markers and in the percentage of Lgr5-GFP + cells, as well as a selective increase in the fraction of S-G2-M cells in the Lgr5 + population. Using whole mount cultures of the organ of Corti we detected a statistically significant increment in the fraction of proliferating Sox2 supporting cells after CHIR99021 treatment, but only rarely appearance of novel MyoVIIa+/Edu + hair cells. In conclusion, these tools provide a robust mean to identify novel regulators of auditory organ regeneration and to clarify the contribution of stem cell activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[en]Human papillomavirus (HPV) belongs to the Papillomaviridae virus family and it is one of the most common sexual transmission infections. HPV genome is composed of eight genes, including two early genes and six late genes. Among these late genes, E6 and E7 code for proteins that trigger cell-cycle re-entry in infected cells, which can lead to cervical cancer development. The IARC (International Agency for Research Cancer) proposed a guideline based on Hill’s criteria to determine whether the relation between HPV infection and cervical cancer is causal or not. Epidemiological studies have demonstrated that HPV infection is a necessary but non-sufficient cause for cervical cancer. Furthermore, HPV infection is considered the first necessary cause described of a human cancer, being HPV16 and 18 carcinogenic to humans and the most studied types. Cervical cancer is the second leading cause of cancer death among women worldwide. Different screening programs are carried out with the aim of preventing cervical cancer; such as cytologies and HPV tests. There are two main methods which are equally usable to detect HPV: the real-time PCR assays and the array assays. Regarding the molecular mechanisms of HPV mediated malignancies, E2, E6 and E7 proteins of HPV16 lead to immune response evasion, inducing IL-10 and TGF-β1 gene expression. Besides, E6 and E7 proteins allow cell-cycle reentry, phosphorylating RB and ubiquitinating p53 respectively. HPV genome integration in host genome leads to the alteration of host and viral genes expression, including oncogenes and tumor suppressor genes. However, the differences of E6 and E7 oncoproteins in different HPV types is poorly known due to the fact that almost the most studied HPV type has been HPV16.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although the retinoblastoma protein (Rb) functions as a checkpoint in the cell cycle, it also regulates differentiation. It has recently been shown that Rb is acetylated during differentiation; however, the role of this modification has not been identified. Depletion of Rb levels with short hairpin RNA resulted in inhibition of human keratinocyte differentiation, delayed cell cycle exit and allowed cell cycle re-entry. Restoration of Rb levels rescued defects in differentiation and cell cycle exit and re-entry; however, re-expression of Rb with the major acetylation sites mutated did not. During keratinocyte differentiation, acetylation of Rb is mediated by PCAF and it is further shown that PCAF acetyltransferase activity is also required for normal differentiation. The major acetylation sites in Rb are located within the nuclear localization sequence and, although mutation did not alter Rb localization in cycling cells, the mutant is mislocalized to the cytoplasm during differentiation. Studies indicate that acetylation is a mechanism for controlling Rb localization in human keratinocytes, with either reduction of the PCAF or exogenous expression of the deacetylase SIRT1, resulting in mislocalization of Rb. These findings identify PCAF-mediated acetylation of Rb as an event required to retain Rb within the nucleus during keratinocyte differentiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rotenone is an inhibitor of mitochondrial complex I that produces a model of Parkinson's disease (PD), where neurons undergo apoptosis by caspase-dependent and/or caspase-independent pathways. Inhibition of calpains has recently been shown to attenuate neuronal apoptosis. This study aims to establish for the first time, the time-point of calpain activation with respect to the caspase activation and the possibility of cell cycle re-entry in rotenone-mediated cell death. Immunoblot results revealed calpain activation occurred at 5, 10 h prior to caspase-3 activation (at 15 h), suggesting calpain activation was an earlier cellular event compared to caspase activation in the rotenone-mediated apoptosis. In addition, an upregulation of phospho-p53 was observed at 21 h. However, no expression or upregulation of cell cycle regulatory proteins including cdc25a, cyclin-D1 and cyclin-D3 were observed, strongly suggesting that cell cycle re-entry did not occur. These findings provide new insights into the differential patterns of calpain and caspase activation that result from rotenone poisoning and which may be relevant to the therapeutic management of PD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In protein folding and secretion disorders, activation of endoplasmic reticulum (ER) stress signaling (ERSS) protects cells, alleviating stress that would otherwise trigger apoptosis. Whether the stress-surviving cells resume normal function is not known. We studied the in vivo impact of ER stress in terminally differentiating hypertrophic chondrocytes (HCs) during endochondral bone formation. In transgenic mice expressing mutant collagen X as a consequence of a 13-base pair deletion in Col10a1 (13del), misfolded alpha1(X) chains accumulate in HCs and elicit ERSS. Histological and gene expression analyses showed that these chondrocytes survived ER stress, but terminal differentiation is interrupted, and endochondral bone formation is delayed, producing a chondrodysplasia phenotype. This altered differentiation involves cell-cycle re-entry, the re-expression of genes characteristic of a prehypertrophic-like state, and is cell-autonomous. Concomitantly, expression of Col10a1 and 13del mRNAs are reduced, and ER stress is alleviated. ERSS, abnormal chondrocyte differentiation, and altered growth plate architecture also occur in mice expressing mutant collagen II and aggrecan. Alteration of the differentiation program in chondrocytes expressing unfolded or misfolded proteins may be part of an adaptive response that facilitates survival and recovery from the ensuing ER stress. However, the altered differentiation disrupts the highly coordinated events of endochondral ossification culminating in chondrodysplasia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mammalian adaptor protein Alix [ALG-2 (apoptosis-linked-gene-2 product)-interacting protein X] belongs to a conserved family of proteins that have in common an N-terminal Bro1 domain and a C-terminal PRD (proline-rich domain), both of which mediate partner protein interactions. Following our previous finding that Xp95, the Xenopus orthologue of Alix, undergoes a phosphorylation-dependent gel mobility shift during progesteroneinduced oocyte meiotic maturation, we explored potential regulation of Xp95/Alix by protein phosphorylation in hormone-induced cell cycle re-entry or M-phase induction. By MALDI-TOF (matrix-assisted laser-desorption ionization-time-of-flight) MS analyses and gel mobility-shift assays, Xp95 is phosphorylated at multiple sites within the N-terminal half of the PRD during Xenopus oocyte maturation, and a similar region in Alix is phosphorylated in mitotically arrested but not serum-stimulated mammalian cells. By tandem MS, Thr745 within this region, which localizes in a conserved binding site to the adaptor protein SETA [SH3 (Src homology 3) domain-containing, expressed in tumorigenic astrocytes] CIN85 (a-cyano-4-hydroxycinnamate)/SH3KBP1 (SH3-domain kinase-binding protein 1), is one of the phosphorylation sites in Xp95. Results from GST (glutathione S-transferase)-pull down and peptide binding/competition assays further demonstrate that the Thr745 phosphorylation inhibits Xp95 interaction with the second SH3 domain of SETA. However, immunoprecipitates of Xp95 from extracts of M-phase-arrested mature oocytes contained additional partner proteins as compared with immunoprecipitates from extracts of G2-arrested immature oocytes. The deubiquitinase AMSH (associated molecule with the SH3 domain of signal transducing adaptor molecule) specifically interacts with phosphorylated Xp95 in M-phase cell lysates. These findings establish that Xp95/Alix is phosphorylated within the PRD during M-phase induction, and indicate that the phosphorylation may both positively and negatively modulate their interaction with partner proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mammalian adaptor protein Alix [ALG-2 (apoptosis-linked-gene-2 product)-interacting protein X] belongs to a conserved family of proteins that have in common an N-terminal Bro1 domain and a C-terminal PRD (proline-rich domain), both of which mediate partner protein interactions. Following our previous finding that Xp95, the Xenopus orthologue of Alix, undergoes a phosphorylation-dependent gel mobility shift during progesteroneinduced oocyte meiotic maturation, we explored potential regulation of Xp95/Alix by protein phosphorylation in hormone-induced cell cycle re-entry or M-phase induction. By MALDI-TOF (matrix-assisted laser-desorption ionization-time-of-flight) MS analyses and gel mobility-shift assays, Xp95 is phosphorylated at multiple sites within the N-terminal half of the PRD during Xenopus oocyte maturation, and a similar region in Alix is phosphorylated in mitotically arrested but not serum-stimulated mammalian cells. By tandem MS, Thr745 within this region, which localizes in a conserved binding site to the adaptor protein SETA [SH3 (Src homology 3) domain-containing, expressed in tumorigenic astrocytes] CIN85 (a-cyano-4-hydroxycinnamate)/SH3KBP1 (SH3-domain kinase-binding protein 1), is one of the phosphorylation sites in Xp95. Results from GST (glutathione S-transferase)-pull down and peptide binding/competition assays further demonstrate that the Thr745 phosphorylation inhibits Xp95 interaction with the second SH3 domain of SETA. However, immunoprecipitates of Xp95 from extracts of M-phase-arrested mature oocytes contained additional partner proteins as compared with immunoprecipitates from extracts of G2-arrested immature oocytes. The deubiquitinase AMSH (associated molecule with the SH3 domain of signal transducing adaptor molecule) specifically interacts with phosphorylated Xp95 in M-phase cell lysates. These findings establish that Xp95/Alix is phosphorylated within the PRD during M-phase induction, and indicate that the phosphorylation may both positively and negatively modulate their interaction with partner proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cells have evolved oscillators with different frequencies to coordinate periodic processes. Here we studied the interaction of two oscillators, the cell division cycle (CDC) and the yeast metabolic cycle (YMC), in budding yeast. Previous work suggested that the CDC and YMC interact to separate high oxygen consumption (HOC) from DNA replication to prevent genetic damage. To test this hypothesis, we grew diverse strains in chemostat and measured DNA replication and oxygen consumption with high temporal resolution at different growth rates. Our data showed that HOC is not strictly separated from DNA replication; rather, cell cycle Start is coupled with the initiation of HOC and catabolism of storage carbohydrates. The logic of this YMC-CDC coupling may be to ensure that DNA replication and cell division occur only when sufficient cellular energy reserves have accumulated. Our results also uncovered a quantitative relationship between CDC period and YMC period across different strains. More generally, our approach shows how studies in genetically diverse strains efficiently identify robust phenotypes and steer the experimentalist away from strain-specific idiosyncrasies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

© 2016 Burnetti et al. Cells have evolved oscillators with different frequencies to coordinate periodic processes. Here we studied the interaction of two oscillators, the cell division cycle (CDC) and the yeast metabolic cycle (YMC), in budding yeast. Previous work suggested that the CDC and YMC interact to separate high oxygen consumption (HOC) from DNA replication to prevent genetic damage. To test this hypothesis, we grew diverse strains in chemostat and measured DNA replication and oxygen consumption with high temporal resolution at different growth rates. Our data showed that HOC is not strictly separated from DNA replication; rather, cell cycle Start is coupled with the initiation of HOC and catabolism of storage carbohydrates. The logic of this YMC-CDC coupling may be to ensure that DNA replication and cell division occur only when sufficient cellular energy reserves have accumulated. Our results also uncovered a quantitative relationship between CDC period and YMC period across different strains. More generally, our approach shows how studies in genetically diverse strains efficiently identify robust phenotypes and steer the experimentalist away from strain-specific idiosyncrasies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quelques évidences suggèrent que Bcl-xL, un membre anti-apoptotique de la famille Bcl-2, possède également des fonctions au niveau du cycle cellulaire et de ses points-contrôle. Pour étudier la régulation et fonction de Bcl-xL au cours du cycle cellulaire, nous avons généré et exprimé dans des cellules humaines une série de mutants de phosphorylation incluant Thr41Ala, Ser43Ala, Thr47Ala, Ser49Ala, Ser56Ala, Ser62Ala et Thr115Ala. L'analyse de cette série de mutants révèle que les cellules exprimant Bcl-xL(Ser62Ala) sont moins stables au point-contrôle G2 du cycle cellulaire comparées aux cellules exprimant le type sauvage ou les autres mutants de phosphorylation incluant Thr41Ala, Ser43Ala, Thr47Ala, Ser56Ala et Thr115Ala. Les études de cinétiques de phosphorylation et de localisation de phospho-Bcl-xL(Ser62) dans des cellules synchronisées et suite à l'activation du point-contrôle en G2 médié par l'étoposide (VP16), nous indiquent que phospho-Bcl-xL(Ser62) migre dans les corps nucléolaires durant l'arrêt en G2 dans les cellules exposées au VP16. Une série d'expériences incluant des essais kinase in vitro, l'utilisation d'inhibiteurs pharmacologiques et d'ARN interférant, nous révèlent que Polo kinase 1 (PLK1) et MAPK9/JNK2 sont les protéines kinase impliquées dans la phosphorylation de Bcl-xL(Ser62), et pour son accumulation dans les corps nucléolaires pendant le point-contrôle en G2. Nos résultats indiquent que durant le point-contrôle en G2, phospho-Bcl-xL(Ser62) se lie et se co-localise avec CDK1(CDC2), le complexe cycline-kinase qui contrôle l'entrée en mitose. Nos résultats suggèrent que dans les corps nucléolaires, phospho-Bcl-xL(Ser62) stabilise l'arrêt en G2 en séquestrant CDK1(CDC2) pour retarder l'entrée en mitose. Ces résultats soulignent également que les dommages à l'ADN influencent la composition des corps nucléolaires, structure nucléaire qui émerge maintenant comme une composante importante de la réponse aux dommages à l'ADN. Dans une deuxième étude, nous décrivons que les cellules exprimant le mutant de phosphorylation Bcl-xL(Ser62Ala) sont également plus stables au point-contrôle de l'assemblage du fuseau de la chromatine (SAC) suite à une exposition au taxol, comparées aux cellules exprimant le type sauvage ou d'autres mutants de phosphorylation de Bcl-xL, incluant Thr41Ala, Ser43Ala, Thr47Ala, Ser56Ala. Cet effet est indépendent de la fonction anti-apoptotique de Bcl-xL. Bcl-xL(Ser62) est fortement phosphorylé par PLK1 et MAPK14/SAPKp38α à la prométaphase, la métaphase et à la frontière de l'anaphase, et déphosphorylé à la télophase et la cytokinèse. Phospho-Bcl-xL(Ser62) se trouve dans les centrosomes avec γ-tubuline, le long du fuseau mitotique avec la protéine moteure dynéine et dans le cytosol mitotique avec des composantes du SAC. Dans des cellules exposées au taxol, phospho-Bcl-xL(Ser62) se lie au complexe inhibiteur CDC20/MAD2/BUBR1/BUB3, alors que le mutant Bcl-xL(Ser62Ala) ne se lie pas à ce complexe. Ces résultats indiquent que durant le SAC, la phosphorylation de Bcl-xL(Ser62) accélère la résolution du SAC et l'entrée des cellules en anaphase. Des expériences bloquant l'expression de Bcl-xL révèlent ègalement un taux très élevé de cellules tétraploïdes et binuclées après un traitement au nocodazole, consistant avec une fonction de Bcl-xL durant la mitose et dans la stabilité génomique. Dans la troisième étude, l'analyse fonctionnelle de cette série de mutants de phosphorylation indique également que les cellules exprimant Bcl-xL(Ser49Ala) sont moins stables durant le point-contrôle G2 et entre en cytokinèse plus lentement dans des cellules exposées aux inhibiteurs de la polymérisation/dépolymérisation des tubulines, composantes des microtubules. Ces effets de Bcl-xL(Ser49Ala) sont indépendents de sa fonction anti-apoptotique. La phosphorylation de Bcl-xL(Ser49) est dynamique au cours du cycle cellulaire. Dans des cellules synchronisées, Bcl-xL(Ser49) est phosphorylé en phase S et G2, déphosphorylé à la prométaphase, la métaphase et à la frontière de l'anaphase, et re-phosphorylé durant la télophase et la cytokinèse. Au cours du point-contrôle G2 induit par les dommages à l'ADN, un pool important de phospho-Bcl-xL(Ser49) se trouve aux centrosomes, un site important pour la régulation de l'entrée en mitose. Durant la télophase et la cytokinèse, phospho-Bcl-xL(Ser49) se trouve le long des microtubules avec la protéine moteure dynéine et dans le cytosol mitotique. Finalement, nos résultats suggèrent que PLK3 est responsable de la phosphorylation de Bcl-xL(Ser49), une protéine kinase impliquée pour l'entrée des cellules en mitose et pour la progression de la mitose jusqu'à la division cellulaire.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A strain of Saccaromyces cerevisiae (SC3B) with a temperature sensitive defect in the synthesis of DNA has been isolated. This defect is due to a single recessive mutation in a gene named INS1 required for the initiation of S phase. Arrested cells carrying the ins1$\sp{ts}$ allele are defective in the completion of G1 to S phase transition events including SPB duplication or separation, initiation of DNA synthesis, normal control of budding, and bud neck stability. The mutation and a gene which complements the mutation were mapped to chromosome IV. The complementing gene was proved to be the wild type allele of the temperature sensitive mutation by genetic linkage of an integrated clone. A very low abundance 4.2 kb RNA message was observed in the strain SC3B which increased greatly in this strain transformed with a multiple copy plasmid carrying the complementing clone. The wild type gene was sequenced and found to encode a 1268 amino acid protein of with a molecular weight of 142,655 Daltons. Computer assisted searches for similar DNA sequences revealed no significant homology matches. However, searches for protein sequence homology revealed a protein (the DIS3 gene product of S. pombe) with a similar sequence over a 534 amino acid stretch to the predicted INS1 gene product. A later search revealed a near identical sequence for a gene (SRK1) also isolated from S. cerevisiae. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Successful gene therapy depends on stable transduction of hematopoietic stem cells. Target cells must cycle to allow integration of Moloney-based retroviral vectors, yet hematopoietic stem cells are quiescent. Cells can be held in quiescence by intracellular cyclin-dependent kinase inhibitors. The cyclin-dependent kinase inhibitor p15INK4B blocks association of cyclin-dependent kinase (CDK)4/cyclin D and p27kip-1 blocks activity of CDK2/cyclin A and CDK2/cyclin E, complexes that are mandatory for cell-cycle progression. Antibody neutralization of β transforming growth factor (TGFβ) in serum-free medium decreased levels of p15INK4B and increased colony formation and retroviral-mediated transduction of primary human CD34+ cells. Although TGFβ neutralization increased colony formation from more primitive, noncycling hematopoietic progenitors, no increase in M-phase-dependent, retroviral-mediated transduction was observed. Transduction of the primitive cells was augmented by culture in the presence of antisense oligonucleotides to p27kip-1 coupled with TGFβ-neutralizing antibodies. The transduced cells engrafted immune-deficient mice with no alteration in human hematopoietic lineage development. We conclude that neutralization of TGFβ, plus reduction in levels of the cyclin-dependent kinase inhibitor p27, allows transduction of primitive and quiescent hematopoietic progenitor populations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

p21Sdi1 (also known as Cip1 and Waf1), an inhibitor of DNA synthesis cloned from senescent human fibroblasts, is an inhibitor of G1 cyclin-dependent kinases (Cdks) in vitro and is transcriptionally regulated by wild-type p53. In addition, p21Sdi1 has been found to inhibit DNA replication by direct interaction with proliferating cell nuclear antigen. In this study we analyzed normal human fibroblast cells arrested in G0 and determined that an excess of p21Sdi1 was present after immunodepletion of various cyclins and Cdks, in contrast to mitogen-stimulated cells in early S phase. Expression of antisense p21Sdi1 RNA in G0-arrested cells resulted in induction of DNA synthesis as well as entry into mitosis. These results suggest that p21Sdi1 functions in G0 and early G1 and that decreased expression of the gene is necessary for cell cycle progression.