8 resultados para cathinone
Resumo:
The racemic tertiary cathinones N,N-dimethylcathinone (1), N,N-diethylcathinone (2) and 2-(1-pyrrolidinyl)-propiophenone (3) have been prepared in reasonable yield and characterized using NMR and mass spectroscopy. HPLC indicates that these compounds are isolated as the anticipated racemic mixture. These can then be co-crystallized with (+)-O,O′-di-p-toluoyl-d-tartaric, (+)-O,O′-dibenzoyl-d-tartaric and (-)-O,O′-dibenzoyl-l-tartaric acids giving the single enantiomers S and R respectively of 1, 2 and 3, in the presence of sodium hydroxide through a dynamic kinetic resolution. X-ray structural determination confirmed the enantioselectivity. The free amines could be obtained following basification and extraction. In methanol these are reasonably stable for the period of several hours, and their identity was confirmed by HPLC and CD spectroscopy.
Resumo:
Wastewater analysis was used to examine prevalence and temporal trends in the use of two cathinones, methylone and mephedrone, in an urban population (>200,000 people) in South East Queensland, Australia. Wastewater samples were collected from the inlet of the sewage treatment plant that serviced the catchment from 2011 to 2013. Liquid chromatography coupled with tandem mass spectrometry was used to measure mephedrone and methylone in wastewater sample using direct injection mode. Mephedrone was not detected in any samples while methylone was detected in 45% of the samples. Daily mass loads of methylone were normalized to the population and used to evaluate methylone use in the catchment. Methylone mass loads peaked in 2012 but there was no clear temporal trend over the monitoring period. The prevalence of methylone use in the catchment was associated with the use of MDMA, the more popular analogue of methylone, as indicated by other complementary sources. Methylone use was stable in the study catchment during the monitoring period whereas mephedrone use has been declining after its peak in 2010. More research is needed on the pharmacokinetics of emerging illicit drugs to improve the applicability of wastewater analysis in monitoring their use in the population.
Resumo:
Background: Drug scenes within several countries have changed in recent years to incorporate a range of licit psychoactive products, collectively known as “legal highs.” Hundreds of different legal high products have been described in the literature. Many of these products contain synthetic stimulants that allegedly
“mirror” the effects of some illicit drugs. In 2009–2010, growing concern by the UK and Irish governments focused on mephedrone, a synthetic stimulant that had become embedded within several drug scenes in Britain and Ireland. In April 2010, mephedrone and related cathinone derivatives were banned under
the UK’s Misuse of Drugs Act 1971. Setting aside “worse case scenarios” that have been portrayed by UK and Irish media, little is known about mephedrone use from the consumer’s perspective. The purpose of this paper was to (1) explore respondents’ experiences with mephedrone, (2) examine users’ perceptions
about the safety of mephedrone, and primarily to (3) examine sources of mephedrone supply during the pre- and post-ban periods.
Methods: Semi-structured interviews were conducted with 23 adults who had used mephedrone during 2009–2010. Data collection occurred in May and June 2010, following the ban on mephedrone. A total of 20/23 respondents had used mephedrone during the post-ban period, and the vast majority had prior
experience with ecstasy or cocaine. Respondents’ ages ranged from 19 to 51, approximately half of the sample were female and the majority (19 of 23) were employed in full- or part-time work.
Results: Most respondents reported positive experiences with mephedrone, and for some, the substance emerged as a drug of choice. None of the respondents reported that the once-legal status of mephedrone implied that it was safe to use. Very few respondents reported purchasing mephedrone from street-based
or on-line headshops during the pre-ban period, and these decisions were guided in part by respondents’ attempts to avoid “drug user” identities. Most respondents purchased or obtained mephedrone from friends or dealers, and mephedrone was widely available during the 10-week period following the ban. Respondents reported a greater reliance on dealers and a change in mephedrone packaging following the criminalisation of mephedrone.
Conclusion: The findings are discussed in the context of what appears to be a rapidly changing mephedrone market. We discuss the possible implications of criminalising mephedrone, including the potential displacement effects and the development of an illicit market.
Resumo:
Since the late 1990s and early 2000s, derivatives of well-known designer drugs as well as new psychoactive compounds have been sold on the illicit drug market and have led to intoxications and fatalities. The LC-MS/MS screening method presented covers 31 new designer drugs as well as cathinone, methcathinone, phencyclidine, and ketamine which were included to complete the screening spectrum. All but the last two are modified molecular structures of amphetamine, tryptamine, or piperazine. Among the amphetamine derivatives are cathinone, methcathinone, 3,4-DMA, 2,5-DMA, DOB, DOET, DOM, ethylamphetamine, MDDMA, 4-MTA, PMA, PMMA, 3,4,5-TMA, TMA-6 and members of the 2C group: 2C-B, 2C-D, 2C-H, 2C-I, 2C-P, 2C-T-2, 2C-T-4, and 2C-T-7. AMT, DPT, DiPT, MiPT, DMT, and 5MeO-DMT are contained in the tryptamine group, BZP, MDBP, TFMPP, mCPP, and MeOPP in the piperazine group. Using an Applied Biosystems LC-MS/MS API 365 TurboIonSpray it is possible to identify all 35 substances. After addition of internal standards and mixed-mode solid-phase extraction the analytes are separated using a Synergi Polar RP column and gradient elution with 1 mM ammonium formate and methanol/0.1% formic acid as mobile phases A and B. Data acquisition is performed in MRM mode with positive electro spray ionization. The assay is selective for all tested substances. Limits of detection were determined by analyzing S/N-ratios and are between 1.0 and 5.0 ng/mL. Matrix effects lie between 65% and 118%, extraction efficiencies range from 72% to 90%.
Resumo:
New designer drugs are constantly emerging onto the illicit drug market and it is often difficult to validate and maintaincomprehensive analytical methods for accurate detection of these compounds. Generally, toxicology laboratories utilize a screening method, such as immunoassay, for the presumptive identification of drugs of abuse. When a positive result occurs, confirmatory methods, such as gas chromatography (GC) or liquid chromatography (LC) coupled with mass spectrometry (MS), are required for more sensitive and specific analyses. In recent years, the need to study the activities of these compounds in screening assays as well as to develop confirmatory techniques to detect them in biological specimens has been recognized. Severe intoxications and fatalities have been encountered with emerging designer drugs, presenting analytical challenges for detection and identification of such novel compounds. The first major task of this research was to evaluate the performance of commercially available immunoassays to determine if designer drugs were cross-reactive. The second major task was to develop and validate a confirmatory method, using LC-MS, to identify and quantify these designer drugs in biological specimens.^ Cross-reactivity towards the cathinone derivatives was found to be minimal. Several other phenethylamines demonstrated cross-reactivity at low concentrations, but results were consistent with those published by the assay manufacturer or as reported in the literature. Current immunoassay-based screening methods may not be ideal for presumptively identifying most designer drugs, including the "bath salts." For this reason, an LC-MS based confirmatory method was developed for 32 compounds, including eight cathinone derivatives, with limits of quantification in the range of 1-10 ng/mL. The method was fully validated for selectivity, matrix effects, stability, recovery, precision, and accuracy. In order to compare the screening and confirmatory techniques, several human specimens were analyzed to demonstrate the importance of using a specific analytical method, such as LC-MS, to detect designer drugs in serum as immunoassays lack cross-reactivity with the novel compounds. Overall, minimal cross-reactivity was observed, highlighting the conclusion that these presumptive screens cannot detect many of the designer drugs and that a confirmatory technique, such as the LC-MS, is required for the comprehensive forensic toxicological analysis of designer drugs.^
Resumo:
Capillary electrophoresis (CE) is a modern analytical technique, which is electrokinetic separation generated by high voltage and taken place inside the small capillaries. In this dissertation, several advanced capillary electrophoresis methods are presented using different approaches of CE and UV and mass spectrometry are utilized as the detection methods. ^ Capillary electrochromatography (CEC), as one of the CE modes, is a recent developed technique which is a hybrid of capillary electrophoresis and high performance liquid chromatography (HPLC). Capillary electrochromatography exhibits advantages of both techniques. In Chapter 2, monolithic capillary column are fabricated using in situ photoinitiation polymerization method. The column was then applied for the separation of six antidepressant compounds. ^ Meanwhile, a simple chiral separation method is developed and presented in Chapter 3. Beta cycodextrin was utilized to achieve the goal of chiral separation. Not only twelve cathinone analytes were separated, but also isomers of several analytes were enantiomerically separated. To better understand the molecular information on the analytes, the TOF-MS system was coupled with the CE. A sheath liquid and a partial filling technique (PFT) were employed to reduce the contamination of MS ionization source. Accurate molecular information was obtained. ^ It is necessary to propose, develop, and optimize new techniques that are suitable for trace-level analysis of samples in forensic, pharmaceutical, and environmental applications. Capillary electrophoresis (CE) was selected for this task, as it requires lower amounts of samples, it simplifies sample preparation, and it has the flexibility to perform separations of neutral and charged molecules as well as enantiomers. ^ Overall, the study demonstrates the versatility of capillary electrophoresis methods in forensic, pharmaceutical, and environmental applications.^
Resumo:
Capillary electrophoresis (CE) is a modern analytical technique, which is electrokinetic separation generated by high voltage and taken place inside the small capillaries. In this dissertation, several advanced capillary electrophoresis methods are presented using different approaches of CE and UV and mass spectrometry are utilized as the detection methods. Capillary electrochromatography (CEC), as one of the CE modes, is a recent developed technique which is a hybrid of capillary electrophoresis and high performance liquid chromatography (HPLC). Capillary electrochromatography exhibits advantages of both techniques. In Chapter 2, monolithic capillary column are fabricated using in situ photoinitiation polymerization method. The column was then applied for the separation of six antidepressant compounds. Meanwhile, a simple chiral separation method is developed and presented in Chapter 3. Beta cycodextrin was utilized to achieve the goal of chiral separation. Not only twelve cathinone analytes were separated, but also isomers of several analytes were enantiomerically separated. To better understand the molecular information on the analytes, the TOF-MS system was coupled with the CE. A sheath liquid and a partial filling technique (PFT) were employed to reduce the contamination of MS ionization source. Accurate molecular information was obtained. It is necessary to propose, develop, and optimize new techniques that are suitable for trace-level analysis of samples in forensic, pharmaceutical, and environmental applications. Capillary electrophoresis (CE) was selected for this task, as it requires lower amounts of samples, it simplifies sample preparation, and it has the flexibility to perform separations of neutral and charged molecules as well as enantiomers. Overall, the study demonstrates the versatility of capillary electrophoresis methods in forensic, pharmaceutical, and environmental applications.