1000 resultados para catechol oxidation
Resumo:
Ruthenium(III) complexes of the Schiff bases formed by the condensation of polymer bound aldehyde and the amines, such as 1,2-phenylenediamine (PS-opd), 2-aminophenol (PS-ap), and 2-aminobenzimidazole (PS-ab) have been prepared. The magnetic moment, EPR and electronic spectra suggest an octahedral structure for the complexes. The complexes of PS-opd, PS-ap, and PS-ab have been assigned the formula [PS-opdRuCl3(H2O)], [PS-apRuCl2(H2O)2], [PS-ab- RuCl3(H2O)2], respectively. These complexes catalyze oxidation of catechol using H2O2 selectively to o-benzoquinone. The catalytic activity of the complexes is in the order [PS-ab- RuCl3(H2O)2] . [PS-opdRuCl3(H2O)] [PS-apRuCl2(H2O)2]. Mechanism of the catalytic oxidation of catechol by ruthenium( III) complex is suggested to take place through the formation of a ruthenium(II) complex and its subsequent oxidation by H2O2 to the ruthenium(III) complex.
Resumo:
One of the difficulties with using molecularly imprinted polymers (MIPs) and other electrically insulating materials as the recognition element in electrochemical sensors is the lack of a direct path for the conduction of electrons from the active sites to the electrode. We have sought to address this problem through the preparation and characterization of novel hybrid materials combining a catalytic MIP, capable of oxidizing the template, catechol, with an electrically conducting polymer. In this way a network of "molecular wires" assists in the conduction of electrons from the active sites within the MIP to the electrode surface. This was made possible by the design of a new monomer that combines orthogonal polymerizable functionality; comprising an aniline group and a methacrylamide. Conducting films were prepared on the surface of electrodes (Au on glass) by electropolymerization of the aniline moiety. A layer of MIP was photochemically grafted over the polyaniline, via N,N'-diethyldithiocarbamic acid benzyl ester (iniferter) activation of the methacrylamide groups. Detection of catechol by the hybrid-MIP sensor was found to be specific, and catechol oxidation was detected by cyclic voltammetry at the optimized operating conditions: potential range -0.6 V to +0.8 V (vs Ag/AgCl), scan rate 50 mV/s, PBS pH 7.4. The calibration curve for catechol was found to be linear to 144 µM, with a limit of detection of 228 nM. Catechol and dopamine were detected by the sensor, whereas analogues and potentially interfering compounds, including phenol, resorcinol, hydroquinone, serotonin, and ascorbic acid, had minimal effect (=3%) on the detection of either analyte. Nonimprinted hybrid electrodes and bare gold electrodes failed to give any response to catechol at concentrations below 0.5 mM. Finally, the catalytic properties of the sensor were characterized by chronoamperometry and were found to be consistent with Michaelis-Menten kinetics. © 2009 American Chemical Society.
Resumo:
Platinum(II) complexes Pt(pap)(an-cat)] (1) and Pt(pap)(py-cat)] (2) with 2-(phenylazo)pyridine (pap), 4-2-(anthracen-9-ylmethylene)amino]ethyl]benzene-1,2-diol (H(2)an-cat), and 4-2-(pyren-1-ylmethylene)amino]ethyl]benzene-1,2-diol (H2py-cat) were prepared, and their photoinduced cytotoxicity was studied. The complexes were found to release catecholate ligand in the presence of excess glutathione (GSH), resulting in cellular toxicity in the cancer cells. The catecholate complex Pt(pap)(cat)] (3) was prepared and used as a control. Complex 3, which is structurally characterized by X-ray crystallography, has platinum(II) in a distorted square-planar geometry. The complexes are redox-active, showing responses near 0.6 and 1.0 V versus SCE in N,N-dimethylformamide/0.1 M tetrabutylammonium perchlorate corresponding to a two-step catechol oxidation process and at -0.3 and -1.3 V for reduction of the pap ligand. Complex 1 showed remarkable light-induced cytotoxicity in HaCaT (human skin keratinocytes) and MCF-7 (human breast cancer) cells, giving IC50 value of similar to 5 mu M in visible light of 400-700 nm and >40 mu M in the dark. The 2',7'-dichlorofluorescein diacetate (DCFDA) assay showed the generation of reactive oxygen species (ROS), which seems to trigger apoptosis, as is evident from the annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) assay. The fluorescence microscopic images showed significant nuclear localization of the complexes and free ligands. A mechanistic study revealed possible reduction of the coordinated azo bond of pap by cellular GSH, releasing the catecholate ligand and resulting in remarkable photochemotherapeutic action of the complexes.
Resumo:
The thesis deals with the synthesis, characterization and catalytic activity studies of supported cobalt(ii), nickel(II) and copper(II) complexes of O-phenylenediamine and Schiff bases derived from 3-hydroxyquinoxaline -2-carboxaldehyde. Zeolite encapsulation and polymer anchoring was employed for supporting the complexes. The characterization techniques proved that the encapsulation as well as polymer supporting has been successfully achieved. The catalytic activity studies revealed that the activities of the simple complexes are improved upon encapsulation. Various characterization techniques are used such as, chemical analysis, EPR, magnetic measurements, FTIR studies, thermal analysis, electronic spectra, XRD, SEM, surface area, and GC.The present study indicated that the that the mechanism of oxidation of catechol and DTBC by hydrogen peroxide is not altered by the change in the coordination sphere around the metal ion due to encapsulation. This fact suggests outer sphere mechanism for the reactions. The catalytic activity by zeolite encapsulated complex was found to be slower than that by the neat complex. The slowing down of the reaction in the zeolite case is probably due to the constraint imposed by the zeolite framework. The rate of DTBC ( 3,5-di-tert-butylchatechol)oxidation was found to be greater than the rate of catechol oxidation. This is obviously due to the presence of electron donating tertiary butyl groups.
Resumo:
Zeolite Y-encapsulated ruthenium(III) complexes of Schiff bases derived from 3-hydroxyquinoxaline-2-carboxaldehyde and 1,2- phenylenediamine, 2-aminophenol, or 2-aminobenzimidazole (RuYqpd, RuYqap and RuYqab, respectively) and the Schiff bases derived from salicylaldehyde and 1,2-phenylenediamine, 2-aminophenol, or 2-aminobenzimidazole (RuYsalpd, RuYsalap and RuYsalab, respectively) have been prepared and characterized. These complexes, except RuYqpd, catalyze catechol oxidation by H2O2 selectively to 1,2,4-trihydroxybenzene. RuYqpd is inactive. A comparative study of the initial rates and percentage conversion of the reaction was done in all cases. Turn over frequency of the catalysts was also calculated. The catalytic activity of the complexes is in the order RuYqap > RuYqab for quinoxaline-based complexes and RuYsalap > RuYsalpd > RuYsalab for salicylidene-based complexes. The reaction is believed to proceed through the formation of a Ru(V) species.
Resumo:
In the present study an attempt has been made to synthesize some simple complexes of multidentate ligands. Analogous zeolite encapsulated complexes were also synthesized and characterized. Immobilization on to polymer supports through covalent attachment is expected to solve the problem of decomposition of many complexes during catalytic reaction. Hence the work is also extended to the synthesis and characterization of some polymer supported complexes of Schiff base Iigands. All the three types of synthesized complexes, simple, zeolite encapsulated and polystyrene anchored, were subjected to catalytic activity study towards catechol-oxidation reaction. A selected group of complexes were also screened for their catalytic activity towards phenol-oxidation reaction. Biological screening of the synthesized ligands and neat complexes were done with a view to establish the effect of complexation on biological systems.
Resumo:
Three new Mn(III) complexes [MnL1(OOCH)(OH2)] (1), [MnL2(OH2)(2)][Mn2L22(NO2)(3)] (2) and [Mn2L21(NO2)(2)] (3) (where H2L1 = H(2)Me(2)Salen = 2,7-bis(2-hydroxyphenyl)-2,6-diazaocta-2,6-diene and H2L2 = H(2)Salpn = 1,7-bis(2-hydroxyphenyl)-2,6-diazahepta-1,6-diene) have been synthesized. X-ray crystal structure analysis reveals that 1 is a mononuclear species whereas 2 contains a mononuclear cationic and a dinuclear nitrite bridged (mu-1 kappa O:2 kappa O') anionic unit. Complex 3 is a phenoxido bridged dimer containing terminally coordinated nitrite. Complexes 1-3 show excellent catecholase-like activity with 3,5-di-tert-butylcatechol (3,5-DTBC) as the substrate. Kinetic measurements suggest that the rate of catechol oxidation follows saturation kinetics with respect to the substrate and first order kinetics with respect to the catalyst. Formation of bis(mu-oxo)dimanganese(III,III) as an intermediate during the course of reaction is identified from ESI-MS spectra. The characteristic six line EPR spectra of complex 2 in the presence of 3,5-DTBC supports the formation of manganese(II)-semiquinonate as an intermediate species during the catalytic oxidation of 3,5-DTBC.
Resumo:
Three new trinuclear heterometallic nickel(II)manganese(II) complexes, [(NiL)2Mn(NCS)2] (1), [(NiL)2Mn(NCO)2] (2), and [{NiL(EtOH)}2Mn(NO2)2]center dot 2EtOH (3), have been synthesized by using [NiL] as the so-called ligand complex [where H2L = N,N'-bis(salicylidene)-1,3-propanediamine] and have been structurally characterized. Crystal structure analyses revealed that complexes 1 and 2 are angular trinuclear species, in which two terminal four-coordinate square planar [NiL] moieties are coordinated to a central MnII through double phenoxido bridges. The MnII is in a six-coordinate distorted octahedral environment that is bonded additionally to two mutually cis nitrogen atoms of terminal thiocyanate (in 1) and cyanate (in 2). In complex 3, in addition to the double phenoxo bridge, the two terminal NiII ions are linked to the central MnII by means of a nitrite bridge (1?N:2?O) that, together with a coordinated ethanol molecule, gives rise to an octahedral environment around the NiII ions and consequently the structure becomes linear. Catecholase activity of these three complexes was examined by using 3,5-di-tert-butylcatechol (3,5-DTBC) as the substrate. All three complexes mimic catecholase activity and the rate of catechol oxidation follows saturation kinetics with respect to the substrate and first-order kinetics with respect to the catalyst. The EPR spectra of the complexes exhibit characteristic six line spectra, which indicate the presence of high-spin octahedral MnII species in solution state. The ESI-MS positive spectrum of 1 in the presence of 3,5-DTBC has been recorded to investigate possible complexsubstrate intermediates.
Resumo:
Acetone powders prepared from leaf extracts of Tecoma stans L. were found to catalyze the oxidation of catechol to 3,4,3',4'-tetrahydroxydiphenyl. Fractionation of the acetone powders obtained from Tecoma leaves with acetone, negative adsorption of the acetone fraction with tricalcium phosphate gel, and chromatography of the gel supernatant on DEAE-Sephadex yielded a 68-fold purified enzyme with 66% recovery. The enzyme had an optimum pH around 7.2. It showed a temperature optimum of 30° and the Km for catechol was determined as 2 x 10-4 m. The purified enzyme moved as a single band on polyacrylamide gel electrophoresis. Its activity was found to be partially stimulated by Mg2+. The reaction was not inhibited by o-phenanthroline and agr,agr'-dipyridyl. The purified enzyme was highly insensitive to a range of copper-chelating agents. It was not affected appreciably by thiol inhibitors. The reaction was found to be suppressed to a considerable extent by reducing agents like GSH, cysteine, cysteamine, and ascorbic acid. The purified enzyme was remarkably specific for catechol. Catalase affected neither the enzyme activity nor the time course of the reaction. Hydrogen peroxide was not formed as a product of the reaction.
Resumo:
In attempting to determine the nature of the enzyme system mediating the conversion of catechol to diphenylenedioxide 2,3-quinone, in Tecoma leaves, further purification of the enzyme was undertaken. The crude enzyme from Tecoma leaves was processed further by protamine sulfate precipitation, positive adsorption on tricalcium phosphate gel, and elution and chromatography on DEAE-Sephadex. This procedure yielded a 120-fold purified enzyme which stoichiometrically converted catechol to diphenylenedioxide 2,3-quinone. The purity of the enzyme system was assessed by polyacrylamide gel electrophoresis. The approximate molecular weight of the enzyme was assessed as 200,000 by gel filtration on Sephadex G-150. The enzyme functioned optimally at pH 7.1 and at 35 °C. The Km for catechol was determined as 4 × 10−4 Image . The enzyme did not oxidize o-dihydric phenols other than catechol and it did not exhibit any activity toward monohydric and trihydric phenols and flavonoids. Copper-chelating agents did not inhibit the enzyme activity. Copper could not be detected in the purified enzyme preparations. The purified enzyme was not affected by extensive dialysis against copper-complexing agents. It did not show any peroxidase activity and it was not inhibited by catalase. Hydrogen peroxide formation could not be detected during the catalytic reaction. The enzymatic conversion of catechol to diphenylenedioxide 2,3-quinone by the purified Tecoma leaf enzyme was suppressed by such reducing agents as GSH and cysteamine. The purified enzyme was not sensitive to carbon monoxide. It was not inhibited by thiol inhibitors. The Tecoma leaf was found to be localized in the soluble fraction of the cell. Treatment of the purified enzyme with acid, alkali, and urea led to the progressive denaturation of the enzyme.
Resumo:
In 0.05 mol/L phosphate buffer solution (pH 7.0), carbon nanotubes modified electrode exhibits rapid response, strong catalytic activity with high stability toward the electrochemical oxidation of catechol. The electrochemical behavior of catechol on both the multi-walled and single-walled carbon nanotubes modified electrode was investigated. The experimental conditions, such as pH of the solution and scan rate were optimized. The currents (measured by constant potential amperometry) increase linearly with the concentrations of catechol in the range of 2.0 x 10(-5) - 1.2 x 10(-3) mol/L. Moreover, at the multi-walled carbon nanotubes modified electrode the electrochemical responses of catechol and ascorbic acid can be separated clearly.
Resumo:
The electrochemical oxidation of catechol and dopamine has been studied at a platinum micro-electrode (10 pm diameter) in two room temperature ionic liquids (RTILs): 1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C(2)mim][NTf2]) and 1-Butyl-3-methylimidazolium tetrafluoroborate ([C(4)mim][BE4]). For catechol in [C(2)mim][NTf2], an electrochemically quasi-reversible oxidation peak was observed at 1.1 V vs. Pt with a back peak at 0.4 V vs. Pt. This is assigned to the two-electron oxidation of catechol to doubly protonated o-benzoquinone. Double-step chronoamperometry gave a diffusion coefficient for the catechol and the oxidised species which is 3.8 x 10(-11) m(2) s(-1) for both. For catechol in [C(4)mim][BF4], a two-electron oxidation wave was observed at 1.0 V vs. Pt with no back peak. Another peak at less positive potential was also observed at 0.6 V vs. Pt in [C(4)mim][BF4] but not in [C(2)mim][NTf2] which is assigned to the adsorption of electrochemically formed neutral o-benzoquinone on the platinum electrode. The oxidised protonated o-benzoquinone is suggested to be deprotonated by the [BF4](-) anion, but not by the [NTf2](-) anion: hence adsorption of the neutral species at the platinum electrode, not the charged species. For dopamine in both RTILs, two chemically irreversible oxidation peaks were observed at 0.75 V and 1.1 V vs. Pt, and assigned to the oxidation of dopamine to the corresponding semi-quinone and the quinone. Potential-step chronoamperometry was carried out on the oxidation waves of dopamine in [C(2)mim][NTf2] and the diffusion coefficient of species in solution was calculated to be 6.85 x 10(-12) m(2) s(-1) and confirmed that the waves corresponded to one and two electron processes. A third wave was observed at 1.8 V vs. Pt which is attributed to the oxidation of the amine group to a radical cation with likely subsequent follow up chemistry. In [C(4)mim][BF4] a peak at less positive potential was observed for dopamine, similar to catechol which is assigned to the adsorption of the neutral quinone species on the platinum electrode formed by the reaction of the removal of protons from the oxidised dopamine with the [BF4](-) anion. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Molecular modeling is growing as a research tool in Chemical Engineering studies, as can be seen by a simple research on the latest publications in the field. Molecular investigations retrieve information on properties often accessible only by expensive and time-consuming experimental techniques, such as those involved in the study of radical-based chain reactions. In this work, different quantum chemical techniques were used to study phenol oxidation by hydroxyl radicals in Advanced Oxidation Processes used for wastewater treatment. The results obtained by applying a DFT-based model showed good agreement with experimental values available, as well as qualitative insights into the mechanism of the overall reaction chain. Solvation models were also tried, but were found to be limited for this reaction system within the considered theoretical level without further parameterization.
Resumo:
Molecular modeling is growing as a research tool in Chemical Engineering studies, as can be seen by a simple research on the latest publications in the field. Molecular investigations retrieve information on properties often accessible only by expensive and time-consuming experimental techniques, such as those involved in the study of radical-based chain reactions. In this work, different quantum chemical techniques were used to study phenol oxidation by hydroxyl radicals in Advanced Oxidation Processes used for wastewater treatment. The results obtained by applying a DFT-based model showed good agreement with experimental values available, as well as qualitative insights into the mechanism of the overall reaction chain. Solvation models were also tried, but were found to be limited for this reaction system within the considered theoretical level without further parameterization.