966 resultados para catalytic oxidation of ethanol
Resumo:
This work presents a study of the catalytic oxidation of ethanol on polycrystalline gold electrode in alkaline media. The investigation was carried out by means of chronoamperometry, cyclic voltammetry, and in situ FTIR spectroscopy. The main goal was to investigate the early stages of ethanol electrooxidation, namely at fairly low potentials (E = 600 mV vs. RHE) and for moderate reaction times (t < 300 s). Chronoamperometric experiments show a current increase accompanying the increasing in the ethanol concentration up to about 2 M and then a slight decrease at 3 M. Adsorbed CO has been observed as early as about 200 mV vs. RHE and indicates that the cleavage of the C-C bond might occur, probably to a small extent, at very low overpotentials during ethanol adsorption on gold surface. The amount of dissolved acetate ions produced during the chronoamperomentry was followed by the asymmetric stretching band at 1558 cm(-1) as a function of time, and found to increase linearly with time up to 300 s. This allowed estimating the reaction order of acetate formation with respect to ethanol concentration.
Resumo:
The electro-oxidation of ethanol on platinum in phosphoric acid opens the door to promote the oxidation reaction at higher temperatures. However, the effect of the presence of water is not well understood. In this work, the electro-oxidation of ethanol on platinum was studied in concentrated phosphoric acid containing different concentrations of water at room temperature. The results show that effect of bulk water on the rate electro-oxidation is highest at 0.60 V and decreases for increasing potentials. This was suggested as due to the increasing formation of oxygenated species on the electrode surface with potential, which in turn is more efficient than the increase of water content in the electrolyte. Altogether, these results were interpreted as an evidence of a Langmuir-Hinshelwood step involving oxygenated species as one of the adsorbed partners. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Ethanol oxidation has been studied on Pt(111), Pt(100) and Pt(110) electrodes in order to investigate the effect of the surface structure and adsorbing anions using electrochemical and FTIR techniques. The results indicate that the surface structure and anion adsorption affect significantly the reactivity of the electrode. Thus, the main product of the oxidation of ethanol on the Pt(111) electrode is acetic acid, and acetaldehyde is formed as secondary product. Moreover, the amount of CO formed is very small, and probably associated with the defects present on the electrode surface. For that reason, the amount of CO(2) is also small. This electrode has the highest catalytic activity for the formation of acetic acid in perchloric acid. However, the formation of acetic acid is inhibited by the presence of specifically adsorbed anions, such as (bi) sulfate or acetate, which is the result of the formation of acetic acid. On the other hand, CO is readily formed at low potentials on the Pt(100) electrode, blocking completely the surface. Between 0.65 and 0.80 V, the CO layer is oxidized and the production of acetaldehyde and acetic acid is detected. The Pt(110) electrode displays the highest catalytic activity for the splitting of the C-C bond. Reactions giving rise to CO formation, from either ethanol or acetaldehyde, occur at high rate at any potential. On the other hand, the oxidation of acetaldehyde to acetic acid has probably the lower reaction rate of the three basal planes.
Resumo:
We present in this work an experimental investigation of the effect of temperature (from 25 to 180 ºC) in the electro-oxidation of ethanol on platinum in two different phosphoric acid concentrations. We observed that the onset potential for ethanol electro-oxidation shifts to lower values and the reaction rates increase as temperature is increased for both electrolytes. The results were rationalized in terms of the effect of temperature on the adsorption of reaction intermediates, poisons, and anions. The formation of oxygenated species at high potentials, mainly in the more diluted electrolyte, also contributes to increase the electro-oxidation reaction rate.
Resumo:
We present the magnetic separation approach to facilitate the recovery of gold nanoparticle (AuNP) catalysts. The use of magnetically recoverable supports for the immobilization of AuNPs instead of traditional oxides, polymers or carbon based solids guarantees facile, clean, fast and efficient separation of the catalyst at the end of the reaction cycle. Magnetic separation can be considered an environmentally benign separation approach, since it minimizes the use of auxiliary substances and energy for achieving catalyst recovery. The catalyst preparation is based on the immobilization of Au(3+) on the surface of core-shell silica-coated magnetite nanoparticles, followed by metal reduction using two different methods. AuNPs were prepared by thermal reduction in air and by hydrogen reduction at mild temperature. Interestingly, the mean particle size of the supported AuNPs was similar (ca. 5.9 nm), but the polydispersity of the samples is quite different. The catalytic activity of both catalysts in the aerobic oxidation of alcohols was investigated and a distinct selectivity for benzyl alcohol oxidation was observed.
Resumo:
The electrochemical oxidation of ethanol at Sn((1-x))Ir (x) O(2) electrodes (with x = 0.01, 0.05, 0.1 and 0.3) was studied in 0.1 mol L(-1) HClO(4) solution. Electrolysis experiments were carried out and the reaction products were analyzed by Liquid Chromatography. It was found that the amounts of the reaction products depended on the composition of the electrode. In situ infrared reflectance spectroscopy measurements were performed to identify the adsorbed intermediates and to postulate a reaction mechanism for ethanol electrooxidation on these electrode materials. As evidence, acetaldehyde and acetic acid were formed through a successive reaction process. Carbon dioxide was also identified as the end product, showing that the cleavage of the carbon-carbon bond occurred. These results indicate that the synthesized catalysts are able to lead to the total combustion of organic compounds. Analysis of the water bending band at different potentials illustrated its role at the electrode interface.
Resumo:
Two new metal- organic compounds {[Cu-3(mu(3)-4-(p)tz)(4)(mu(2)-N-3)(2)(DMF)(2)](DMF)(2)}(n) (1) and {[Cu(4ptz) (2)(H2O)(2)]}(n) (2) {4-ptz = 5-(4-pyridyl)tetrazolate} with 3D and 2D coordination networks, respectively, have been synthesized while studying the effect of reaction conditions on the coordination modes of 4-pytz by employing the [2 + 3] cycloaddition as a tool for generating in situ the 5-substituted tetrazole ligands from 4-pyridinecarbonitrile and NaN3 in the presence of a copper(II) salt. The obtained compounds have been structurally characterized and the topological analysis of 1 discloses a topologically unique trinodal 3,5,6-connected 3D network which, upon further simplification, results in a uninodal 8-connected underlying net with the bcu (body centred cubic) topology driven by the [Cu-3(mu(2)-N-3)(2)] cluster nodes and mu(3)-4-ptz linkers. In contrast, the 2D metal-organic network in 2 has been classified as a uninodal 4-connected underlying net with the sql [Shubnikov tetragonal plane net] topology assembled from the Cu nodes and mu(2)-4-ptz linkers. The catalytic investigations disclosed that 1 and 2 act as active catalyst precursors towards the microwave-assisted homogeneous oxidation of secondary alcohols (1-phenylethanol, cyclohexanol, 2-hexanol, 3-hexanol, 2-octanol and 3-octanol) with tert-butylhydroperoxide, leading to the yields of the corresponding ketones up to 86% (TOF = 430 h(-1)) and 58% (TOF = 290 h(-1)) in the oxidation of 1-phenylethanol and cyclohexanol, respectively, after 1 h under low power ( 10 W) microwave irradiation, and in the absence of any added solvent or additive.
Resumo:
The reaction of 2,6-diformyl-4-methylphenol with 1,3-bis(3-aminopropyl)tetramethyldisiloxane in the presence of MnCl2 in a 1:1:2 molar ratio in methanol afforded a dinuclear -chlorido-bridged manganese(II) complex of the macrocyclic [2+2] condensation product (H2L), namely, [Mn2Cl2(H2L)(HL)]Cl center dot 3H(2)O (1). The latter afforded a new compound, namely, [Mn2Cl2(H2L)(2)][MnCl4]center dot 4CH(3)CN center dot 0.5CHCl(3 center dot)0.4H(2)O (2), after recrystallisation from 1:1 CHCl3/CH3CN. The co-existence of the free and complexed azomethine groups, phenolato donors, mu-chlorido bridges, and the disiloxane unit were well evidenced by ESI mass spectrometry and FTIR spectroscopy and confirmed by X-ray crystallography. The magnetic measurements revealed an antiferromagnetic interaction between the two high-spin (S = 5/2, g = 2) manganese(II) ions through the mu-chlorido bridging ligands. The electrochemical behaviour of 1 and 2 has been studied, and details of their redox properties are reported. Both compounds act as catalysts or catalyst precursors in the solvent-free low-power microwave-assisted oxidation of selected secondary alcohols, for example, 1-phenylethanol, cyclohexanol, 2- and 3-octanol, to the corresponding ketones in the absence of solvent. The highest yield of 72% was achieved for 1-phenylethanol by using a maximum of 1% molar ratio of catalyst relative to substrate.
Resumo:
The reaction of 2,6-diformyl-4-methylphenol with 1,3-bis(3-aminopropyl)tetramethyldisiloxane in the presence of MnCl2 in a 1:1:2 molar ratio in methanol afforded a dinuclear -chlorido-bridged manganese(II) complex of the macrocyclic [2+2] condensation product (H2L), namely, [Mn2Cl2(H2L)(HL)]Cl center dot 3H(2)O (1). The latter afforded a new compound, namely, [Mn2Cl2(H2L)(2)][MnCl4]center dot 4CH(3)CN center dot 0.5CHCl(3 center dot)0.4H(2)O (2), after recrystallisation from 1:1 CHCl3/CH3CN. The co-existence of the free and complexed azomethine groups, phenolato donors, mu-chlorido bridges, and the disiloxane unit were well evidenced by ESI mass spectrometry and FTIR spectroscopy and confirmed by X-ray crystallography. The magnetic measurements revealed an antiferromagnetic interaction between the two high-spin (S = 5/2, g = 2) manganese(II) ions through the mu-chlorido bridging ligands. The electrochemical behaviour of 1 and 2 has been studied, and details of their redox properties are reported. Both compounds act as catalysts or catalyst precursors in the solvent-free low-power microwave-assisted oxidation of selected secondary alcohols, for example, 1-phenylethanol, cyclohexanol, 2- and 3-octanol, to the corresponding ketones in the absence of solvent. The highest yield of 72% was achieved for 1-phenylethanol by using a maximum of 1% molar ratio of catalyst relative to substrate.
Resumo:
The catalytic peroxidative oxidation (with H2O2) of cyclohexane in an ionic liquid (IL) using the tetracopper(II) complex [(CuL)2(μ4-O,O′,O′′,O′′′-CDC)]2·2H2O [HL = 2-(2-pyridylmethyleneamino)benzenesulfonic acid, CDC = cyclohexane-1,4-dicarboxylate] as a catalyst is reported. Significant improvements on the catalytic performance, in terms of product yield (up to 36%), TON (up to 529), reaction time, selectivity towards cyclohexanone and easy recycling (negligible loss in activity after three consecutive runs), are observed using 1-butyl-3-methylimidazolium hexafluorophosphate as the chosen IL instead of a molecular organic solvent including the commonly used acetonitrile. The catalytic behaviors in the IL and in different molecular solvents are discussed.
Resumo:
This review concerns metal-catalyzed reactions of oxidation of alcohols to the respective products, mainly ketones and aldehydes, mostly within the period of 2010–2014. Both conventional and unconventional systems, not only with usual reagents, but also with uncommon and prospective ones, are overviewed, with recently achieved developments.
Resumo:
We present in this work an experimental investigation of the effect of temperature (from 25 to 180 ºC) in the electro-oxidation of ethanol on platinum in two different phosphoric acid concentrations. We observed that the onset potential for ethanol electro-oxidation shifts to lower values and the reaction rates increase as temperature is increased for both electrolytes. The results were rationalized in terms of the effect of temperature on the adsorption of reaction intermediates, poisons, and anions. The formation of oxygenated species at high potentials, mainly in the more diluted electrolyte, also contributes to increase the electro-oxidation reaction rate.
Resumo:
Spinel systems with the composition of Cu 1−x Zn x Cr 2 O 4 [x = 0 CCr, x = 0.25 CZCr-1, x = 0.5 CZCr-2, x = 0.75 CZCr-3 and x = 1 ZCr] were prepared by homogeneous co-precipitation method and were characterized by X-ray diffraction (XRD) and FT-IR spectroscopy. Elemental analysis was done by EDX, and surface area measurements by the BET method. The redox behavior of these catalysts in cyclohexane oxidation at 243 K using TBHP as oxidant was examined. Cyclohexanone was the major product over all catalysts with some cyclohexanol. 69.2% selectivity to cyclohexanol and cyclohexanone at 23% conversion of cyclohexane was realized over zinc chromite spinels in 10 h.
Resumo:
The selective catalytic oxidation of alcohols over a mixture of copper(l) chloride and a number of linear 'linker-less' or 'branched' poly(ethylene glycol)-supported nitroxyl radicals of the 2,2,6,6-tetramethyl-piperidine-1-oxyl (TEMPO) family as a catalyst system has been investigated in the presence of molecular oxygen in a batch reactor. It is found that the activity profile of the polymer-supported nitroxyl radicals is in good agreement with that of low-molecular weight nitroxyl catalysts, for example, allylic and benzylic alcohols are oxidised faster than aliphatic alcohols. The oxidations can be tuned to be highly selective such that aldehydes are the only oxidation products observed in the oxidation of primary alcohols and the oxidations of secondary alcohols yield the corresponding ketones. A strong structural effect of the polymeric nitroxyl species on catalytic activity that is dependent upon their spatial orientation of the nitroxyl radicals is particularly noted. The new soluble macromolecular catalysts can be recovered readily from the reaction mixture by solvent precipitation and filtration. In addition, the recycled catalysts demonstrate a similar selectivity with only a small decrease in activity compared to the fresh catalyst even after five repetitive cycles. (c) 2005 Elsevier B.V. All rights reserved.