180 resultados para carrot
Resumo:
The aim of this work was to study the effects of heat-moisture treatment (27% moisture, 100 degrees C, 16 h) and of enzymatic digestion (alpha-amylase and glucoamylase) on the properties of sweet potato (SP), Peruvian carrot (PC) and ginger (G) starches. The structural modification with heat-moisture treatment (HMT) affected crystallinity, enzyme susceptibility and viscosity profile. The changes in PC starch were the most pronounced, with a strong decrease of relative crystallinity (from 0.31 to 0.21) and a shift of X-ray pattern from B- to A-type. HMTof SP and G starch did not change the Xray pattern (A-type). The relative crystallinity of these starches changed only slightly, from 0.32 to 0.29 (SP) and from 0.33 to 0.32 (G). The extent of these structural changes (PC > SP > G) altered the susceptibility of the starches to enzymatic attack, but not in same order (PC > G > SP). HMT increased the starches digestion, probably due to rearrangement of disrupted crystallites, increasing accessible areas to attack of enzymes. The viscosity profiles and values changed significantly with HMT, resulting in higher pasting temperatures, decrease of viscosity values and no breakdown, i.e., stability at high temperatures and shear rates. Changes in pasting properties appeared to be more significant for PC and SP starch, whereas the changes for G starch were small. Setback was minimized following HMT in SP and G starches.
Resumo:
An optimised version of the Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) method for simultaneous determination of 14 organochlorine pesticides in carrots was developed using gas chromatography coupled with electron-capture detector (GC-ECD) and confirmation by gas chromatography tandem mass spectrometry (GC-MS/MS). A citrate-buffered version of QuEChERS was applied for the extraction of the organochlorine pesticides, and for the extract clean-up, primary secondary amine, octadecyl-bonded silica (C18), magnesium sulphate (MgSO4) and graphitized carbon black were used as sorbents. The GC-ECD determination of the target compounds was achieved in less than 20 min. The limits of detection were below the EUmaximum residue limits (MRLs) for carrots, 10–50 μg kg−1, while the limit of quantification did exceed 10 μg kg−1 for hexachlorobenzene (HCB). The introduction of a sonication step was shown to improve the recoveries. The overall average recoveries in carrots, at the four tested levels (60, 80, 100 and 140 μg kg−1), ranged from 66 to 111% with relative standard deviations in the range of 2– 15 % (n03) for all analytes, with the exception of HCB. The method has been applied to the analysis of 21 carrot samples from different Portuguese regions, and β-HCH was the pesticide most frequently found, with concentrations oscillating between less than the limit of quantification to 14.6 μg kg−1. Only one sample had a pesticide residue (β-HCH) above the MRL, 14.6 μg kg−1. This methodology combines the advantages of both QuEChERS and GC-ECD, producing a very rapid, sensitive and reliable procedure which can be applied in routine analytical laboratories.
Resumo:
Selostus: Maan muotoilun, kylvötavan ja siementiheyden vaikutus porkkanan satoon
Resumo:
Farmers must carefully choose the cultivar to be grown for a successful carrot crop. The yield potential of the cultivar may influence nutrient demand and should be known to plan for fertilization application. The aim of this study was to evaluate the cultivar effect on carrot yield and on the nutrient content and quantities allocated to leaves and roots. Three experiments were set up in two crop seasons in Rio Paranaíba, MG, Brazil. In the first season, typical summer, 10 summer cultivars were sown. In the second season, summer-winter (transition), two experiments were set up, one with summer cultivars and the other with winter cultivars. The treatments consisted of the carrot cultivars distributed in randomized blocks with four replications. Fresh and dry matter of the roots and leaves was quantified. Yield was calculated based on fresh matter of the roots. The nutrient content in leaves and roots was determined at the time of harvest. These contents and the dry matter production of roots and leaves were used to calculate nutrient uptake and export. The greatest average for total and commercial yield occurred in the crop under summer conditions. Extraction of N and K for most of the cultivars in the three experiments went beyond the amounts applied through fertilizers. Thus, there was contribution of nutrients from the soil to obtain the yields observed. However, the amount of P taken up was considerably less than that applied. This implies that soil P fertility will increase after cropping. The crop season and the cultivars influenced yield, nutrient content in the leaves and roots, and extraction and export of nutrients by the carrot crop.
Resumo:
ABSTRACT The literature on fertilization for carrot growing usually recommends nutrient application rates for yield expectations lower than the yields currently obtained. Moreover, the recommendation only considers the results of soil chemical analysis and does not include effects such as crop residues or variations in yield levels. The aim of this study was to propose a fertilizer recommendation system for carrot cultivation (FERTICALC Carrot) which includes consideration of the nutrient supply by crop residues, variation in intended yield, soil chemical properties, and the growing season (winter or summer). To obtain the data necessary for modeling nutritional requirements, 210 carrot production stands were sampled in the region of Alto Paranaíba, State of Minas Gerais, Brazil. The dry matter content of the roots, the coefficient of biological utilization of nutrients in the roots, and the nutrient harvest index for summer and winter crops were determined for these samples. To model the nutrient supply by the soil, the literature was surveyed in regard to this theme. A modeling system was developed for recommendation of macronutrients and B. For cationic micronutrients, the system only reports crop nutrient export and extraction. The FERTICALC which was developed proved to be efficient for fertilizer recommendation for carrot cultivation. Advantages in relation to official fertilizer recommendation tables are continuous variation of nutrient application rates in accordance with soil properties and in accordance with data regarding the extraction efficiency of modern, higher yielding cultivars.
Resumo:
Selostus: Porkkanan kasvu ja biomassan jakautuminen varastojuuren ja verson välillä pohjoisissa oloissa
Resumo:
Soil solarization is a technique used for weed and plant disease control in regions with high levels of solar radiation. The effect of solarization (0, 3, 6, and 9 weeks) upon weed populations, carrot (Daucus carota L. cv. Brasília) yield and nematode infestation in carrot roots was studied in São Luís (2º35' S; 44º10' W), MA, Brazil, using transparent polyethylene films (100 and 150 mm of thickness). The maximum temperature at 5 cm of depth was about 10ºC warmer in solarized soil than in control plots. In the study 20 weed types were recorded. Solarization reduced weed biomass and density in about 50% of weed species, including Cyperus spp., Chamaecrista nictans var. paraguariensis (Chod & Hassl.) Irwin & Barneby, Marsypianthes chamaedrys (Vahl) O. Kuntze, Mitracarpus sp., Mollugo verticillata L., Sebastiania corniculata M. Arg., and Spigelia anthelmia L. Approximately 40% of species in the weed flora were not affected by soil mulching. Furthermore, seed germination of Commelina benghalensis L. was increased by soil solarization. Marketable yield of carrots was greater in solarized soil than in the unsolarized one. It was concluded that solarization for nine weeks increases carrot yield and is effective for controlling more than half of the weed species recorded. Mulching was not effective for controlling root-knot nematodes in carrot.
Resumo:
This paper models a legislature in which the same agenda setter serves for two periods, showing how he can exploit a legislature (completely) in the first period by promising future benefits to legislators who support him. In equilibrium, a large majority of legislators vote for the first-period proposal because they thereby maintain the chance of belonging to the minimum winning coalition in the future. Legislators may therefore approve policies by large majorities, or even unanimously, that benefit few, or even none, of them. The results are robust; but institutional arrangements (such as entitlements) can reduce the agenda setter's power by reducing his discretion to reward and punish legislators, and rules (such as sequential voting) can increase a legislator's ability to resist exploitation. Keywords: Legislative bargaining, distributive politics, agenda-setting, proposal power. JEL C72, D72, D78.
Resumo:
The carrot leaf dehydration conditions in air circulation oven were optimized through response surface methodology (RSM) for minimizing the degradation of polyunsaturated fatty acids, particularly alpha-linolenic (LNA, 18:3n-3). The optimized leaf drying time and temperature were 43 h and 70 ºC, respectively. The fatty acids (FA) were investigated using gas chromatography equipped with a flame ionization detector and fused silica capillary column; FA were identified with standards and based on equivalent-chain-length. LNA and other FA were quantified against C21:0 internal standard. After dehydration, the amount of LNA, quantified in mg/100 g dry matter of dehydrated carrot leaves, were 984 mg.
Resumo:
Aqueous extracts of several plant species have shown promising in controlling root-knot nematode, Meloidogyne incognita (Kofoid & White), one of the most limiting agents for carrot cultivation. The current study evaluated the effect of aqueous extracts from seven botanical species applied to 40, 50, 60, 70 and 80 days after sowing 'Nantes' carrots in soil infested with root-knot nematode. Three other treatments included cassava wastewater, distilled water (control), which were applied in the same periods of the extracts application, in addition to carbofuran 50G (80Kg/ha), which was applied once at 60 days after carrot sowing. Evaluations were performed at 90 days after inoculation to determine shoot and root fresh weight, as well as the diameter and the length of principal roots and the number of galls on primary and secondary roots. Plants treated with cassava wastewater, extracts of Ricinus communis L. seeds, Crotalaria juncea L. seeds, R. communis leaves + branches + fruits, Chenopodium ambrosioides L. leaves + branches + inflorescences and Azadirachta indica A. Juss. seeds showed the highest rates of total weight (root + shoot) and shoot weight. The extract of R. communis leaves + branches + fruits provides the highest total root weight and principal root diameter. Cassava wastewater and extracts of R. communis seeds provided the highest principal root weight. The extract of R. communis seeds and cassava wastewater can be considered promising for the alternative control of M. incognita.
Resumo:
The postharvest losses of horticultural products justify the use of preservation techniques. The processing not only adds value to the products, but also makes the products more convenient to the consumers. The objective of this research was to define the methodologies for the minimal processing of carrot and green pepper as to the type and intensity of the adoption of conservation techniques, and to monitor the products after processing through microbiological, physicochemical and nutritional analysis. The vegetables were washed and they were immersed in cold (7ºC) water with 100 mg L-1 free chlorine for sanitation, followed by centrifugation for 5 min. The product was put into BOPP/LDPE (biaxially orientated polypropylene/low-density polyethylene) plastic bags, which were sealed under atmospheric air, vacuum and modified atmosphere (2% O2, 10% CO2, 88% N2) and stored at 1ºC±1ºC. The approximate composition of the vegetables stayed stable during the storage period, in the three tested treatments. The contents of vitamin C for the samples of minimally processed carrot and green pepper did not present differences among treatments. The contents of beta-carotene decreased slightly during the storage period for the minimally processed carrot and green pepper. After processing, carrot and green pepper had psychrotrophic counts of 10²-10(5) and 10³-10(6) CFU g-1, respectively. Anaerobic mesophiles and total coliforms were found in green peppers, representing 1.6x10³ - 7.4x10(5) and <10.g-1 - 7.4x10(5), respectively. Total and fecal coliforms, anaerobic mesophiles and Salmonella were not found in carrots. Salmonella was not found in green pepper.
Resumo:
In Brazil, street markets and vegetable distributors discard vegetable leaves and stems, including those of carrot (Dacus carota L.). Seeking to reduce the waste of vegetable parts, this study characterized chemically the leaves of organically grown carrot in three stages of development to determine the best time for their removal and consumption as food. The leaves were dehydrated in an oven at 70 °C for 43 hours and analyzed for chemical composition, antioxidant activity, chlorophyll content, fatty acid composition, and also calcium (Ca), sodium (Na), potassium (K), magnesium (Mg), manganese (Mn), iron (Fe), zinc (Zn), and copper (Cu) contents. The analyses indicated 100 days of development as the ideal stage for the removal and consumption of carrot leaves with good antioxidant activity requiring only 63.78 ± 0.5 mg.L-1 methanol leaf extract to inhibit 50% of the concentration of the free radical DPPH (2,2-diphenyl-1picrilidrazil), and total protein and alpha-linolenic acid (18:3 n-3/LNA) contents of 18.23% ± 2.8 and 876.55 ± 20.62 mg.100 g-1 of dry matter, respectively.
Resumo:
Effect of ultrasound treatment on carrot juice was investigated through measuring pH, electrical conductivity, viscosity, visual color, total soluble solids, total sugars, total carotenoids, ascorbic acid contents and microbial load. No significant effect (p>0.05) of ultrasound treatment on pH of carrot juice was observed. Electrical conductivity, viscosity and color values gradually increased (p<0.05) with treatment time increase. Total soluble solids, total sugars, total carotenoids and ascorbic acid contents of carrot juice were significantly improved (p<0.05) due to ultrasound treatment. Moreover, significant decrease (p<0.05) in microbial load of sonicated carrot juice was observed. Results from present study suggested that ultrasound treatment could improve quality and safety of carrot juice.
Resumo:
The objective of this study was to monitor carrot seed hydration in water and osmotic solutions to define appropriate conditions for priming treatment. Two Brasília cultivar carrot seed lots were used. Seeds were imbibed in -1.0 and -1.2 MPa PEG 6000 osmotic solutions and in distilled water, in an incubator BOD at 20ºC, using two different hydration methods: imbibition in moistened paper towel sheets and in aerated solutions. The imbibition curves for each seed lot were drawn after determining seed moisture content at 2, 4, 6, 8, 10, 12, 24, 48, 72, 96 hours hydration in water and after 2, 4, 6, 8, 10, 12, 24, 48, 72, 96, 120, 144, 168, 192, 216, 264, 312 hours hydration in PEG 6000 solutions. Seed hydration in distilled water was faster than in PEG 6000 solutions; the primary root protrusion occurred at 48 hours imbibition as seeds reached 54% moisture content. Osmotic conditioning of carrot seeds should be performed by imbibition in PEG 6000 -1.0 or -1.2 MPa solutions to attain 40% and 45% moisture content (moistened paper) or 40% and 45% (aerated solutions).