957 resultados para cardiac autonomic control


Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: Because autonomic dysfunction has been found to lead to cardiometabolic disorders and because studies have reported that simvastatin treatment has neuroprotective effects, the objective of the present study was to investigate the effects of simvastatin treatment on cardiovascular and autonomic changes in fructose-fed female rats. METHODS: Female Wistar rats were divided into three groups: controls (n=8), fructose (n=8), and fructose+ simvastatin (n=8). Fructose overload was induced by supplementing the drinking water with fructose (100 mg/L, 18 wks). Simvastatin treatment (5 mg/kg/day for 2 wks) was performed by gavage. The arterial pressure was recorded using a data acquisition system. Autonomic control was evaluated by pharmacological blockade. RESULTS: Fructose overload induced an increase in the fasting blood glucose and triglyceride levels and insulin resistance. The constant rate of glucose disappearance during the insulin intolerance test was reduced in the fructose group (3.4+ 0.32%/min) relative to that in the control group (4.4+ 0.29%/min). Fructose+simvastatin rats exhibited increased insulin sensitivity (5.4+0.66%/min). The fructose and fructose+simvastatin groups demonstrated an increase in the mean arterial pressure compared with controls rats (fructose: 124+2 mmHg and fructose+simvastatin: 126 + 3 mmHg vs. controls: 112 + 2 mmHg). The sympathetic effect was enhanced in the fructose group (73 + 7 bpm) compared with that in the control (48 + 7 bpm) and fructose+simvastatin groups (31+8 bpm). The vagal effect was increased in fructose+simvastatin animals (84 + 7 bpm) compared with that in control (49 + 9 bpm) and fructose animals (46+5 bpm). CONCLUSION: Simvastatin treatment improved insulin sensitivity and cardiac autonomic control in an experimental model of metabolic syndrome in female rats. These effects were independent of the improvements in the classical plasma lipid profile and of reductions in arterial pressure. These results support the hypothesis that statins reduce the cardiometabolic risk in females with metabolic syndrome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To investigate the effect of aerobic physical training on cardiovascular autonomic control in ovariectomized rats using different approaches. Design: Female Wistar rats were divided into four groups: sedentary sham rats (group SSR), trained sham rats (group TSR), sedentary ovariectomized rats (group SOR), and trained ovariectomized rats (group TOR). Animals from the trained groups were submitted to a physical training protocol (swimming) for 12 weeks. Results: Pharmacological evaluation showed that animals from group TSR had an increase in their cardiac vagal tonus compared with the animals from groups SSR and SOR. The analysis of heart rate variability (HRV) showed that groups TSR and SOR had fewer low-frequency oscillations (0.20-0.75 Hz) compared with groups SSR and TOR. When groups TSR and SOR were compared, the former was found to have fewer oscillations. With regard to high-frequency oscillations (0.75-2.5 Hz), group SSR had a reduction compared with the other groups, whereas group TSR had the greatest oscillation compared with groups SOR and TOR, with all values expressed in normalized units. Analysis of HRV was performed after pharmacological blockade, and low-frequency oscillations were found to be predominantly sympathetic in sedentary animals, whereas there was no predominance in trained animals. Conclusion: Ovariectomy did not change the tonic autonomic control of the heart and, in addition, reduced the participation of sympathetic component in cardiac modulation. Physical training, on the other hand, increased the participation of parasympathetic modulation on the HRV, including ovariectomized rats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the ovariectomy effects on the cardiovascular autonomic adaptations induced by aerobic physical training and the role played by nitric oxide (NO). Female Wistar rats (n =70) were divided into five groups: Sedentary Sham (SS): Trained Sham (TS); Trained Hypertensive Sham treated with N(C)-nitro-L-arginine methyl ester (L-NAME) (THS): Trained Ovariectomized (TO); and Trained Hypertensive Ovariectomized treated with L-NAME (THO). Trained groups were submitted to a physical training during 10 weeks. The cardiovascular autonomic control was investigated in all groups using different approaches: 1) pharmacological evaluation of autonomic tonus with methylatropine and propranolol; 2) analysis of heart rate (HR) and systolic arterial pressure (AP) variability; 3) spontaneous baroreflex sensitivity (BRS) evaluation. Hypertension was observed in THS and THO groups. Pharmacological analysis showed that TS group had increased predominance of autonomic vagal tonus compared to SS group. HR and intrinsic HR were found to be reduced in all trained animals. TS group, compared to other groups, showed a reduction in LF oscillations (LF=0.2-0.75 Hz) of pulse interval in both absolute and normalized units as well as an increase in HF oscillations (HF=0.75-2.50 Hz) in normalized unit. FIRS analysis showed that alpha-index was different between all groups. TS group presented the greatest value, followed by the TO, SS. THO and THS groups. Ovariectomy has negative effects on cardiac autonomic modulation in trained rats, which is characterized by an increase in the sympathetic autonomic modulation. These negative effects suggest NO deficiency. In contrast, the ovariectomy seems to have no effect on AP variability. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have compared the effects of two types of physical training on the cardiac autonomic control in ovariectomized and sham-operated rats according to different approaches: double autonomic blockade (DAB) with methylatropine and propranolol; baroreflex sensibility (BRS) and spectral analysis of heart rate variability (HRV). Wistar female rats (+/- 250 g) were divided into two groups: sham-operated and ovariectomized. Each group was subdivided into three subgroups: sedentary rats, rats submitted to aerobic trained and rats submitted to resistance training. Ovariectomy did not change arterial pressure, basal heart rate (HR), DAB and BRS responses, but interfered with HRV by reducing the low-frequency oscillations (LF = 0.20-0.75 Hz) in relation to sedentary sham-operated rats. The DAB showed that both types of training promoted an increase in the predominance of vagal tonus in sham-operated rats, but HR variations due to methylatropine were decreased in the resistance trained rats compared to sedentary rats. Evaluation of BRS showed that resistance training for sham-operated and ovariectomized rats reduced the tachycardic responses in relation to aerobic training. Evaluation of HRV in trained rats showed that aerobic training reduced LF oscillations in sham-operated rats, whereas resistance training had a contrary effect. In the ovariectomized rats, aerobic training increased high frequency oscillations (HF = 0.75-2.5 Hz), whereas resistance training produced no effect. In sham-operated rats, both types of training increased the vagal autonomic tonus, but resistance training reduced HF oscillations and BRS as well. In turn, both types of training had similar results in ovariectomized rats, except for HRV, as aerobic training promoted an increase in HF oscillations. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background: Recent studies have shown changes in cardiac autonomic control of obese preadolescents. Objective: To assess the heart rate responses and cardiac autonomic modulation of obese preadolescents during constant expiratory effort. Methods: This study assessed 10 obese and 10 non-obese preadolescents aged 9 to 12 years. The body mass index of the obese group was between the 95th and 97th percentiles of the CDC National Center for Health Statistics growth charts, while that of the non-obese group, between the 5th and 85th percentiles. Initially, they underwent anthropometric and clinical assessment, and their maximum expiratory pressures were obtained. Then, the preadolescents underwent a constant expiratory effort of 70% of their maximum expiratory pressure for 20 seconds, with heart rate measurement 5 minutes before, during and 5 minutes after it. Heart rate variability (HRV) and heart rate values were analyzed by use of a software. Results: The HRV did not differ when compared before and after the constant expiratory effort intra- and intergroup. The heart rate values differed (p < 0.05) during the effort, being the total variation in non-obese preadolescents of 18.5 ± 1.5 bpm, and in obese, of 12.2 ± 1.3 bpm. Conclusion: The cardiac autonomic modulation did not differ between the groups when comparing before and after the constant expiratory effort. However, the obese group showed lower cardiovascular response to baroreceptor stimuli during the effort, suggesting lower autonomic baroreflex sensitivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

No clear evidence is available in the literature regarding the acute effect of different styles of music on cardiac autonomic control. The present study aimed to evaluate the acute effects of classical baroque and heavy metal musical auditory stimulation on Heart Rate Variability (HRV) in healthy men. In this study, HRV was analyzed regarding time (SDNN, RMSSD, NN50, and pNN50) and frequency domain (LF, HF, and LF / HF) in 12 healthy men. HRV was recorded at seated rest for 10 minutes. Subsequently, the participants were exposed to classical baroque or heavy metal music for five minutes through an earphone at seated rest. After exposure to the first song, they remained at rest for five minutes and they were again exposed to classical baroque or heavy metal music. The music sequence was random for each individual. Standard statistical methods were used for calculation of means and standard deviations. Besides, ANOVA and Friedman test were used for parametric and non-parametric distributions, respectively. While listening to heavy metal music, SDNN was reduced compared to the baseline (P = 0.023). In addition, the LF index (ms(2) and nu) was reduced during exposure to both heavy metal and classical baroque musical auditory stimulation compared to the control condition (P = 0.010 and P = 0.048, respectively). However, the HF index (ms(2)) was reduced only during auditory stimulation with music heavy metal (P = 0.01). The LF/HF ratio on the other hand decreased during auditory stimulation with classical baroque music (P = 0.019). Acute auditory stimulation with the selected heavy metal musical auditory stimulation decreased the sympathetic and parasympathetic modulation on the heart, while exposure to a selected classical baroque music reduced sympathetic regulation on the heart.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Exercise training (ET) has been used as a nonpharmacological strategy for treatment of diabetes and myocardial infarction (MI) separately. We evaluated the effects ET on functional and molecular left ventricular (LV) parameters as well as on autonomic function and mortality in diabetics after MI. Methods and Results: Male Wistar rats were divided into control (C), sedentary-diabetic infarcted (SDI), and trained-diabetic infarcted (TDI) groups. MI was induced after 15 days of streptozotocin-diabetes induction. Seven days after MI, the trained group underwent ET protocol (90 days, 50-70% maximal oxygen consumption-VO(2)max). LV function was evaluated noninvasively and invasively; baroreflex sensitivity, pulse interval variability, cardiac output, tissue blood flows, VEGF mRNA and protein, HIF1-alpha mRNA, and Ca2+ handling proteins were measured. MI area was reduced in TDI (21 +/- 4%) compared with SDI (38 +/- 4%). ET induced improvement in cardiac function, hemodynamics, and tissue blood flows. These changes were probable consequences of a better expression of Ca2+ handling proteins, increased VEGF mRNA and protein expression as well as improvement in autonomic function, that resulted in reduction of mortality in TDI (33%) compared with SDI (68%) animals. Conclusions: ET reduced cardiac and peripheral dysfunction and preserved autonomic control in diabetic infarcted rats. Consequently, these changes resulted in improved VO(2)max and survival after MI. (J Cardiac Fail 2012; 18:734-744)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to test the hypotheses that in obese children: 1) hypocaloric diet (D) improves both heart rate recovery at 1 min (Delta HRR1) cfter an exercise test, and cardiac autonomic nervous system activity (CANSA) in obese children; 2) Diet and exercise training (DET) combined leads to greater improvement in both Delta HRR1 after an exercise test and in CANSA, than D alone. Moreover, we examined the relationships among Delta HRR1, CANSA, cardiorespiratory fitness and anthropometric variables (AV) in obese children submitted to D and to DET. 33 obese children (10 +/- 0.2 years; body mass index (BMI) >95(th) percentile) were divided into 2 groups: D (n = 15; BMI = 31 +/- 1 kg/m(2)) and DET (n = 18; 29 +/- 1 kg/m(2)). All children performed a maximal cardiopulmonary exercise test on a treadmill. The Delta HRR1 was defined as the difference between heart rate at peak and at 1-min post-exercise. CANSA was assessed using power spectral analysis of heart rate variability at rest. The sympathovagal balance (low frequency and high frequency ratio, LF/HF) was measured. After interventions, all obese children showed reduced body weight (P < 0.05). The D group did not improve in terms of peak VO(2), Delta HRR1 or LF/HF ratio (P > 0.05). In contrast, the DET group showed increased peak VO(2) (P = 0.01) and improved Delta HRR1 (Delta HRR1 = 37.3 +/- 2.6; P = 0.01) and LF/HF ratio (P = 0.001). The DET group demonstrated significant relationships among Delta HRR1, peak VO(2) and CANSA (P < 0.05). In conclusion, DET, in contrast to D, promoted improved Delta HRR1 and CANSA in obese children, suggesting a positive influence of increased levels of cardiorespiratory fitness by exercise training on cardiac autonomic activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Concurrent training is recommended for health improvement, but its acute effects on cardiovascular function are not well established. This study analyzed hemodynamics and autonomic modulation after a single session of aerobic (A), resistance (R), and concurrent (A + R) exercises. Twenty healthy subjects randomly underwent four sessions: control (C:30 min of rest), aerobic (A:30 min, cycle ergometer, 75% of VO(2) peak), resistance (R:6 exercises, 3 sets, 20 repetitions, 50% of 1 RM), and concurrent (AR: A + R). Before and after the interventions, blood pressure (BP), heart rate (HR), cardiac output (CO), and HR variability were measured. Systolic BP decreased after all the exercises, and the greatest decreases were observed after the A and AR sessions (-13 +/- 1 and -11 +/- 1 mmHg, respectively, P < 0.05). Diastolic BP decreased similarly after all the exercises, and this decrease lasted longer after the A session. CO also decreased similarly after the exercises, while systemic vascular resistance increased after the R and AR sessions in the recovery period (+4.0 +/- 1.7 and +6.3 +/- 1.9 U, respectively, P < 0.05). Stroke volume decreased, while HR increased after the exercises, and the greatest responses were observed after the AR session (SV, A = -14.6 +/- 3.6, R = -22.4 +/- 3.5 and AR = -23.4 +/- 2.4 ml; HR, A = +13 +/- 2, R = +15 +/- 2 vs. AR = +20 +/- 2 bpm, P < 0.05). Cardiac sympathovagal balance increased after the exercises, and the greatest increase was observed after the AR session (A = +0.7 +/- 0.8, R = +1.0 +/- 0.8 vs. AR = +1.2 +/- 0.8, P < 0.05). In conclusion, the association of aerobic and resistance exercises in the same training session did not potentiate postexercise hypotension, and increased cardiac sympathetic activation during the recovery period.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated the role of arterial baroreceptors in arterial pressure (AP) and pulse interval (PI) regulation in conscious C57BL mice. Male animals, implanted with catheters in a femoral artery and a jugular vein, were submitted to sino-aortic (SAD), aortic (Ao-X) or carotid sinus denervation (Ca-X), 5 daysprior to the experiments. After basal recording of AP, the lack of reflex bradycardia elicited by administration of phenylephrine was used to confirm the efficacy of SAD, and cardiac autonomic blockade with methylatropine and propranolol was performed. The AP and PI variability were calculated in the time and frequency domains (spectral analysis/fast Fourier transform) with the spectra quantified in low-(LF; 0.25-1Hz) and high-frequency bands (HF; 1-5Hz). Basal AP and AP variability were higher after SAD, Ao-X or Ca-X than in intact mice. Pulse interval was similar among the groups, whereas PI variability was lower after SAD. Atropine elicited a slight tachycardia in control mice but did not change PI after total or partial denervation. The bradycardia caused by propranolol was higher after SAD, Ao-X or Ca-X compared with intact mice. The increase in the variability of AP was accompanied by a marked increase in the LF and HF power of the AP spectra after baroreceptor denervation. The LF and HF power of the PI were reduced by SAD and by Ao-X or Ca-X. Therefore, both sino-aortic and partial baroreceptor denervation in mice elicits hypertension and a remarkable increase in AP variability and cardiac sympathetic tonus. Spectral analysis showed an important contribution of the baroreflex in the power of LF oscillations of the PI spectra. Both sets of baroreceptors seem to be equally important in the autonomic regulation of the cardiovascular system in mice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: Exclusive or associated lesions in various structures of the autonomic nervous system occur in the chronic forms of Chagas disease. In the indeterminate form, the lesions are absent or mild, whereas in the exclusive or combined heart and digestive disease forms, they are often more pronounced. Depending on their severity these lesions can result mainly in cardiac parasympathetic dysfunction but also in sympathetic dysfunction of variable degrees. Despite the key autonomic effect on cardiovascular functioning, the pathophysiological and clinical significance of the cardiac autonomic dysfunction in Chagas disease remains unknown. METHODS: Review of data on the cardiac autonomic dysfunction in Chagas disease and their potential consequences, and considerations supporting the possible relationship between this disturbance and general or cardiovascular clinical and functional adverse outcomes. RESULTS: We hypothesise that possible consequences that cardiac dysautonomia might variably occasion or predispose in Chagas disease include: transient or sustained arrhythmias, sudden cardiac death, adverse overall and cardiovascular prognosis with enhanced morbidity and mortality, an inability of the cardiovascular system to adjust to functional demands and/or respond to internal or external stimuli by adjusting heart rate and other hemodynamic variables, and immunomodulatory and cognitive disturbances. CONCLUSIONS: Impaired cardiac autonomic modulation in Chagas disease might not be a mere epiphenomenon without significance. Indirect evidences point for a likely important role of this alteration as a primary predisposing or triggering cause or mediator favouring the development of subtle or evident secondary cardiovascular functional disturbances and clinical consequences, and influencing adverse outcomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This prospective study analyzed the involvement of the autonomic nervous system in pulmonary and cardiac function by evaluating cardiovascular reflex and its correlation with pulmonary function abnormalities of type 2 diabetic patients. Diabetic patients (N = 17) and healthy subjects (N = 17) were evaluated by 1) pulmonary function tests including spirometry, He-dilution method, N2 washout test, and specific airway conductance (SGaw) determined by plethysmography before and after aerosol administration of atropine sulfate, and 2) autonomic cardiovascular activity by the passive tilting test and the magnitude of respiratory sinus arrhythmia (RSA). Basal heart rate was higher in the diabetic group (87.8 ± 11.2 bpm; mean ± SD) than in the control group (72.9 ± 7.8 bpm, P<0.05). The increase of heart rate at 5 s of tilting was 11.8 ± 6.5 bpm in diabetic patients and 17.6 ± 6.2 bpm in the control group (P<0.05). Systemic arterial pressure and RSA analysis did not reveal significant differences between groups. Diabetes intragroup analysis revealed two behaviors: 10 patients with close to normal findings and 7 with significant abnormalities in terms of RSA, with the latter subgroup presenting one or more abnormalities in other tests and clear evidence of cardiovascular autonomic dysfunction. End-expiratory flows were significantly lower in diabetic patients than in the control group (P<0.05). Pulmonary function tests before and after atropine administration demonstrated comparable responses by both groups. Type 2 diabetic patients have cardiac autonomic dysfunction that is not associated with bronchomotor tone alterations, probably reflecting a less severe impairment than that of type 1 diabetes mellitus. Yet, a reduction of end-expiratory flow was detected.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of exercise training on cardiovascular and autonomic functions were investigated in female rats. After an aerobic exercise training period (treadmill: 5 days/week for 8 weeks), conscious female Wistar (2 to 3 months) sedentary (S, N = 7) or trained rats (T, N = 7) were cannulated for direct arterial pressure (AP) recording in the non-ovulatory phases. Vagal (VT) and sympathetic tonus (ST) were evaluated by vagal (atropine) and sympathetic (propranolol) blockade. Baroreflex sensitivity was evaluated by the heart rate responses induced by AP changes. Cardiopulmonary reflex was measured by the bradycardic and hypotensive responses to serotonin. Resting bradycardia was observed in T (332 ± 7 bpm) compared with S animals (357 ± 10 bpm), whereas AP did not differ between groups. T animals exhibited depressed VT and ST (32 ± 7 and 15 ± 4 bpm) compared to S animals (55 ± 5 and 39 ± 10 bpm). The baroreflex and cardiopulmonary bradycardic responses were lower in T (-1.01 ± 0.27 bpm/mmHg and -17 ± 6 bpm) than in the S group (-1.47 ± 0.3 bpm/mmHg and -41 ± 9 bpm). Significant correlations were observed between VT and baroreflex (r = -0.72) and cardiopulmonary (r = -0.76) bradycardic responses. These data show that exercise training in healthy female rats induced resting bradycardia that was probably due to a reduced cardiac ST. Additionally, trained female rats presented attenuated bradycardic responses to baro- and cardiopulmonary receptor stimulation that were associated, at least in part, with exercise training-induced cardiac vagal reduction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Control of the heart rate and cardiorespiratory interactions (CRI) is predominantly parasympathetic in all jawed vertebrates, with the sympathetic nervous system having some influence in tetrapods. Respiratory sinus arrhythmia (RSA) has been described as a solely mammalian phenomenon but respiration-related beat-to-beat control of the heart has been described in fish and reptiles. Though they are both important, the relative roles of feed-forward central control and peripheral reflexes in generating CRI vary between groups of fishes and probably between other vertebrates. CRI may relate to two locations for the vagal preganglionic neurons (VPN) and in particular cardiac VPN in the brainstem. This has been described in representatives from all vertebrate groups, though the proportion in each location is variable. Air-breathing fishes, amphibians and reptiles breathe discontinuously and the onset of a bout of breathing is characteristically accompanied by an immediate increase in heart rate plus, in the latter two groups, a left-right shunting of blood through the pulmonary circuit. Both the increase in heart rate and opening of a sphincter on the pulmonary artery are due to withdrawal of vagal tone. An increase in heart rate following a meal in snakes is related to withdrawal of vagal tone plus a non-adrenergic-non-cholinergic effect that may be due to humoral factors released by the gut. Histamine is one candidate for this role.