1000 resultados para carbon stratification


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Mediterranean areas, conventional tillage increases soil organic matter losses, reduces soil quality, and contributes to climate change due to increased CO2 emissions. CO2 sequestration rates in soil may be enhanced by appropriate agricultural soil management and increasing soil organic matter content. This study analyzes the stratification ratio (SR) index of soil organic carbon (SOC), nitrogen (N) and C:N ratio under different management practices in an olive grove (OG) in Mediterranean areas (Andalusia, southern Spain). Management practices considered in this study are conventional tillage (CT) and no tillage (NT). In the first case, CT treatments included addition of alperujo (A) and olive leaves (L). A control plot with no addition of olive mill waste was considered (CP). In the second case, NT treatments included addition of chipped pruned branches (NT1) and chipped pruned branches and weeds (NT2). The SRs of SOC increased with depth for all treatments. The SR of SOC was always higher in NT compared to CT treatments, with the highest SR of SOC observed under NT2. The SR of N increased with depth in all cases, ranging between 0.89 (L-SR1) and 39.11 (L-SR3 and L-SR4).The SR of C:N ratio was characterized by low values, ranging from 0.08 (L-SR3) to 1.58 (NT1-SR2) and generally showing higher values in SR1 and SR2 compared to those obtained in SR3 and SR4. This study has evaluated several limitations to the SR index such as the fact that it is descriptive but does not analyze the behavior of the variable over time. In addition, basing the assessment of soil quality on a single variable could lead to an oversimplification of the assessment. Some of these limitations were experienced in the assessment of L, where SR1 of SOC was the lowest of the studied soils. In this case, the higher content in the second depth interval compared to the first was caused by the intrinsic characteristics of this soil's formation process rather than by degradation. Despite the limitations obtained SRs demonstrate that NT with the addition of organic material improves soil quality.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One of the expected benefits of no-tillage systems is a higher rate of soil C sequestration. However, higher C retention in soil is not always apparent when no-tillage is applied, due e.g., to substantial differences in soil type and initial C content. The main purpose of this study was to evaluate the potential of no-tillage management to increase the stock of total organic C in soils of the Pampas region in Argentina. Forty crop fields under no-tillage and conventional tillage systems and seven undisturbed soils were sampled. Total organic C, total N, their fractions and stratification ratios and the C storage capacity of the soils under different managements were assessed in samples to a depth of 30 cm, in three layers (0-5, 5-15 and 15-30 cm). The differences between the C pools of the undisturbed and cultivated soils were significant (p < 0.05) and most pronounced in the top (0-5 cm) soil layer, with more active C near the soil surface (undisturbed > no-tillage > conventional tillage). Based on the stratification ratio of the labile C pool (0-5/5-15 cm), the untilled were separated from conventionally tilled areas. Much of the variation in potentially mineralizable C was explained by this active C fraction (R² = 0.61) and by total organic C (R² = 0.67). No-till soils did not accumulate more organic C than conventionally tilled soils in the 0-30 cm layer, but there was substantial stratification of total and active C pools at no till sites. If the C stratification ratio is really an indicator of soil quality, then the C storage potential of no-tillage would be greater than in conventional tillage, at least in the surface layers. Particulate organic C and potentially mineralizable C may be useful to evaluate variations in topsoil organic matter.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In soils under no-tillage (NT), the continuous crop residue input to the surface layer leads to carbon (C) accumulation. This study evaluated a soil under NT in Ponta Grossa (State of Paraná, Brazil) for: 1) the decomposition of black oat (Avena strigosa Schreb.) residues, 2) relation of the biomass decomposition effect with the soil organic carbon (SOC) content, the particulate organic carbon (POC) content, and the soil carbon stratification ratio (SR) of an Inceptisol. The assessments were based on seven samplings (t0 to t6) in a period of 160 days of three transects with six sampling points each. The oat dry biomass was 5.02 Mg ha-1 at t0, however, after 160 days, only 17.8 % of the initial dry biomass was left on the soil surface. The SOC in the 0-5 cm layer varied from 27.56 (t0) to 30.07 g dm-3 (t6). The SR increased from 1.33 to 1.43 in 160 days. There was also an increase in the POC pool in this period, from 8.1 to 10.7 Mg ha-1. The increase in SOC in the 0-5 cm layer in the 160 days was mainly due to the increase of POC derived from oat residue decomposition. The linear relationship between SOC and POC showed that 21 % of SOC was due to the more labile fraction. The results indicated that the continuous input of residues could be intensified to increase the C pool and sequestration in soils under NT.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Selective papers of the workshop on "Development of models and forest soil surveys for monitoring of soil carbon", Koli, Finland, April 5-9 2006.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

During the Last Glacial Maximum, the climate was substantially colder and the carbon cycle was clearly different from the late Holocene. According to proxy data deep oceanic δ13C was very low, and the atmospheric CO2 concentration also reduced. Several mechanisms have been proposed to explain these changes, but none can fully explain the data, especially the very low deep ocean δ13C values. Oceanic core data show that the deep ocean was very cold and salty, which would lead to enhanced deep ocean stratification. We show that such an enhanced stratification in the coupled climate model CLIMBER-2 helps get very low deep oceanic δ13C values. Indeed the simulated δ13C reaches values as low as −0.8‰ in line with proxy data evidences. Moreover it increases the oceanic carbon reservoir leading to a small, yet robust, atmospheric CO2 drop of approximately 10 ppm.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

During the cold period of the Last Glacial Maximum (LGM, about 21 000 years ago) atmospheric CO2 was around 190 ppm, much lower than the pre-industrial concentration of 280 ppm. The causes of this substantial drop remain partially unresolved, despite intense research. Understanding the origin of reduced atmospheric CO2 during glacial times is crucial to comprehend the evolution of the different carbon reservoirs within the Earth system (atmosphere, terrestrial biosphere and ocean). In this context, the ocean is believed to play a major role as it can store large amounts of carbon, especially in the abyss, which is a carbon reservoir that is thought to have expanded during glacial times. To create this larger reservoir, one possible mechanism is to produce very dense glacial waters, thereby stratifying the deep ocean and reducing the carbon exchange between the deep and upper ocean. The existence of such very dense waters has been inferred in the LGM deep Atlantic from sediment pore water salinity and δ18O inferred temperature. Based on these observations, we study the impact of a brine mechanism on the glacial carbon cycle. This mechanism relies on the formation and rapid sinking of brines, very salty water released during sea ice formation, which brings salty dense water down to the bottom of the ocean. It provides two major features: a direct link from the surface to the deep ocean along with an efficient way of setting a strong stratification. We show with the CLIMBER-2 carbon-climate model that such a brine mechanism can account for a significant decrease in atmospheric CO2 and contribute to the glacial-interglacial change. This mechanism can be amplified by low vertical diffusion resulting from the brine-induced stratification. The modeled glacial distribution of oceanic δ13C as well as the deep ocean salinity are substantially improved and better agree with reconstructions from sediment cores, suggesting that such a mechanism could have played an important role during glacial times.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Total soil carbon and chemical attributes under different land uses in the Brazilian savanna. The Brazilian savanna region (Cerrado) is one of the largest cultivated areas of the world. The different land uses in the region can effectively change the quantities of soil organic matter and the cycling of nutrients. I-lie objective of this study was to evaluate the effect of different land use management systems on the relationship between soil organic carbon and the soil chemical attributes of a Red Latosol (Oxisol) under Cerrado in Rio Verde (Goias state). The treatments studied were native vegetation (cerrado), low-productivity pasture, conventional tillage with soybean, and no-tillage with soybean and maize. The smallest values for pH, available P, K, Ca and Mg were observed for the Cerradao treatment, even if the relatively high C levels increased the potential soil cation exchange capacity. The pasture, conventional tillage and no-tillage treatments showed higher K, Ca, Mg, available 13, and S concentrations in the soil. In the areas where soil tillage did not take place and lime and fertilizers were applied superficially, the stratification of the soil organic carbon provides the retention of the elements near to the surface, with significance correlations with the soil chemicals attributes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study presents an evaluation of the stable isotopic composition of water (hydrogen and oxygen) and dissolved inorganic carbon (DIC) of Lake Geneva, a deep, peri-alpine lake situated at the border between Switzerland and France. The research goal is to apply vertical and seasonal variations of the isotope compositions to evaluate mixing processes of pollutants, nutrients and oxygen. Depth profiles were sampled at different locations throughout Lake Geneva on a monthly and seasonal basis over the course of three years (2009-2011). The results of the oxygen isotopic composition indicate a Rhône River interflow, which can be traced for about 55 km throughout the lake during summer. The Rhône River interflow is 7 to 15 m thick and the molar fraction of Rhône water is estimated to amount up to 37 %. Calculated density of the water and measured isotopic compositions demonstrate that the interflow depth changes in conjunction with the density gradient in the water column during fall. Partial pressure of CO2 indicates that the epilimnion is taking up CO2 from the atmosphere between spring and fall. The epilimnion is most enriched in 13CDIC in September and a progressive depletion of 13CDIC can be observed in the metalimnion from spring to late fall. This stratification is dependent on the local density stratification and the results demonstrate that parameters, which are indicating photosynthesis, are not necessarily linked to δ13CDIC values. In addition, the amount of primary production shows a strong discrepancy between summer 2009 and 2010, but δ13CDIC values of the epilimnion and metalimnion do not indicate variations. In the hypolimnion of the deep lake δ13CDIC values are constant and the progressive depletion allows tracing remineralization processes. The combination of stable carbon and oxygen isotopic compositions allows furthermore tracing Rhône River water fractions, as well as wastewater, stormwater and anthropogenic induced carbon in the water column of the shallow Bay of Vidy. In combination with the results of measured micropollutants, the study underlines that concentrations of certain substances may be related to the Rhône River interflow and/or remineralization of particulate organic carbon. Water quality monitoring and research should therefore be extended to the metalimnion as well as sediment water interface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Topography influences many aspects of forest-atmosphere carbon exchange; yet only a small number of studies have considered the role of topography on the structure of turbulence within and above vegetation and its effect on canopy photosynthesis and the measurement of net ecosystem exchange of CO2 (N-ee) using flux towers. Here, we focus on the interplay between radiative transfer, flow dynamics for neutral stratification, and ecophysiological controls on CO2 sources and sinks within a canopy on a gentle cosine hill. We examine how topography alters the forest-atmosphere CO2 exchange rate when compared to uniform flat terrain using a newly developed first-order closure model that explicitly accounts for the flow dynamics, radiative transfer, and nonlinear eco physiological processes within a plant canopy. We show that variation in radiation and airflow due to topography causes only a minor departure in horizontally averaged and vertically integrated photosynthesis from their flat terrain values. However, topography perturbs the airflow and concentration fields in and above plant canopies, leading to significant horizontal and vertical advection of CO2. Advection terms in the conservation equation may be neglected in flow over homogeneous, flat terrain, and then N-ee = F-c, the vertical turbulent flux of CO2. Model results suggest that vertical and horizontal advection terms are generally of opposite sign and of the same order as the biological sources and sinks. We show that, close to the hilltop, F-c departs by a factor of three compared to its flat terrain counterpart and that the horizontally averaged F-c-at canopy top differs by more than 20% compared to the flat-terrain case.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eddy-covariance measurements of carbon dioxide fluxes were taken semi-continuously between October 2006 and May 2008 at 190 m height in central London (UK) to quantify emissions and study their controls. Inner London, with a population of 8.2 million (~5000 inhabitants per km2) is heavily built up with 8% vegetation cover within the central boroughs. CO2 emissions were found to be mainly controlled by fossil fuel combustion (e.g. traffic, commercial and domestic heating). The measurement period allowed investigation of both diurnal patterns and seasonal trends. Diurnal averages of CO2 fluxes were found to be highly correlated to traffic. However changes in heating-related natural gas consumption and, to a lesser extent, photosynthetic activity that controlled the seasonal variability. Despite measurements being taken at ca. 22 times the mean building height, coupling with street level was adequate, especially during daytime. Night-time saw a higher occurrence of stable or neutral stratification, especially in autumn and winter, which resulted in data loss in post-processing. No significant difference was found between the annual estimate of net exchange of CO2 for the expected measurement footprint and the values derived from the National Atmospheric Emissions Inventory (NAEI), with daytime fluxes differing by only 3%. This agreement with NAEI data also supported the use of the simple flux footprint model which was applied to the London site; this also suggests that individual roughness elements did not significantly affect the measurements due to the large ratio of measurement height to mean building height.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the last termination (from ~18 000 years ago to ~9000 years ago), the climate significantly warmed and the ice sheets melted. Simultaneously, atmospheric CO2 increased from ~190 ppm to ~260 ppm. Although this CO2 rise plays an important role in the deglacial warming, the reasons for its evolution are difficult to explain. Only box models have been used to run transient simulations of this carbon cycle transition, but by forcing the model with data constrained scenarios of the evolution of temperature, sea level, sea ice, NADW formation, Southern Ocean vertical mixing and biological carbon pump. More complex models (including GCMs) have investigated some of these mechanisms but they have only been used to try and explain LGM versus present day steady-state climates. In this study we use a coupled climate-carbon model of intermediate complexity to explore the role of three oceanic processes in transient simulations: the sinking of brines, stratification-dependent diffusion and iron fertilization. Carbonate compensation is accounted for in these simulations. We show that neither iron fertilization nor the sinking of brines alone can account for the evolution of CO2, and that only the combination of the sinking of brines and interactive diffusion can simultaneously simulate the increase in deep Southern Ocean δ13C. The scenario that agrees best with the data takes into account all mechanisms and favours a rapid cessation of the sinking of brines around 18 000 years ago, when the Antarctic ice sheet extent was at its maximum. In this scenario, we make the hypothesis that sea ice formation was then shifted to the open ocean where the salty water is quickly mixed with fresher water, which prevents deep sinking of salty water and therefore breaks down the deep stratification and releases carbon from the abyss. Based on this scenario, it is possible to simulate both the amplitude and timing of the long-term CO2 increase during the last termination in agreement with ice core data. The atmospheric δ13C appears to be highly sensitive to changes in the terrestrial biosphere, underlining the need to better constrain the vegetation evolution during the termination.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

∆14Catm has been estimated as 420 ± 80‰ (IntCal09) during the Last Glacial Maximum (LGM) compared to preindustrial times (0‰), but mechanisms explaining this difference are not yet resolved. ∆14Catm is a function of both cosmogenic production in the high atmosphere and of carbon cycling and partitioning in the Earth system. 10Be-based reconstructions show a contribution of the cosmogenic production term of only 200 ± 200‰ in the LGM. The remaining 220‰ have thus to be explained by changes in the carbon cycle. Recently, Bouttes et al. (2010, 2011) proposed to explain most of the difference in pCO2atm and δ13C between glacial and interglacial times as a result of brine-induced ocean stratification in the Southern Ocean. This mechanism involves the formation of very saline water masses that contribute to high carbon storage in the deep ocean. During glacial times, the sinking of brines is enhanced and more carbon is stored in the deep ocean, lowering pCO2atm. Moreover, the sinking of brines induces increased stratification in the Southern Ocean, which keeps the deep ocean well isolated from the surface. Such an isolated ocean reservoir would be characterized by a low ∆14C signature. Evidence of such 14C-depleted deep waters during the LGM has recently been found in the Southern Ocean (Skinner et al. 2010). The degassing of this carbon with low ∆14C would then reduce ∆14Catm throughout the deglaciation. We have further developed the CLIMBER-2 model to include a cosmogenic production of 14C as well as an interactive atmospheric 14C reservoir. We investigate the role of both the sinking of brine and cosmogenic production, alongside iron fertilization mechanisms, to explain changes in ∆14Catm during the last deglaciation. In our simulations, not only is the sinking of brine mechanism consistent with past ∆14C data, but it also explains most of the differences in pCO2atm and ∆14Catm between the LGM and preindustrial times. Finally, this study represents the first time to our knowledge that a model experiment explains glacial-interglacial differences in pCO2atm, δ13C, and ∆14C together with a coherent LGM climate.