969 resultados para carbon fibers


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kevlar [poly (p-phenilylene terephtalamide)], was used as a precursor in the preparation of activated carbon fibers. For this intention, physical and chemical activations were carried out. Activated fibers were physically prepared from the carbonization of the Kevlar and its later activation with CO2 and steam of water, by the other hand; the chemically activated fibers were obtained by means of the impregnation of the material with phosphoric acid and their later carbonization. Different conditions were used and preliminary analyses of the precursor were taken into account (TGA-DTA / IR). The resulting fibers were characterized by N2 (77K) adsorption, infrared spectroscopy, SEM, and immersion calorimetry. Yields and Burn off were also evaluated. The results shows that if you want to synthesize activated carbon fibers from Kevlar strong conditions respect to the commonly used such as water steam, high phosphoric acid concentrations and methods of impregnation are the ones who allows the development of optimal surface areas and pore volumes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plasma processing of carbon fibers (CFs) is aimed to provide better contact and adhesion between individual plies without decrease in the CF mechanical resistance. This paper deals with surface modification of CFs by an atmospheric pressure dielectric barrier discharge (DBD) for enhancing the adhesion between the CF and the polymeric matrix. The scanning electron microscopy of the treated samples revealed many small particles distributed over entire surface of the fiber. These particles are product of the fiber surface etching during the DBD treatment that removes the epoxy layer covering as-received samples. The alteration of the CF surface morphology was also confirmed by the Atomic force microscopy (AFM), which indicated that the CF roughness increased as a result of the plasma treatment. The analysis of the surface chemical composition provided by X-ray photoelectron spectroscopy showed that oxygen and nitrogen atoms are incorporated onto the surface. The polar oxygen groups formed on the surface lead to the increasing of the CF surface energy. The results of interlaminar shear strength test (short beam) of CFs/polypropylene composites demonstrated a greater shear resistance of the composites made with CFs treated by DBD than the one with untreated fibers. Both the increase in surface roughness and the surface oxidation contribute for the enhancement of CF adhesion properties. © 2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The modulus of elasticity is an important property for the behavior analysis of concrete structures. This research evaluated the strain difference between concrete specimens with and without the application of laminate carbon fiber composites as well as the variation time, in months, of the axial strength compression and modulus of elasticity. Through the experimental results, it is concluded that increases in compressive strength and modulus of elasticity are more significant in the specimens without reinforcement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Resistance to corrosion, high tensile strength, low weight, easiness and rapidity of application, are characteristics that have contributed to the spread of the strengthening technique characterized by bonding of carbon fibers reinforced polymer (CFRP). This research aimed to develop an innovate strengthening method for RC beams, based on a high performance cement-based composite of steel fibers (macro + microfibers) to be applied as a transition layer. The purpose of this transition layer is better control the cracking of concrete and detain or even avoid premature debonding of strengthening. A preliminary study in short beams molded with steel fibers and strengthened with CFRP sheet, was carried out where was verified that the conception of the transition layer is valid. Tests were developed to get a cement-based composite with adequate characteristics to constitute the layer transition. Results showed the possibility to develop a high performance material with a pseudo strain-hardening behavior, high strength and fracture toughness. The application of the strengthening on the transition layer surface had significantly to improve the performance levels of the strengthened beam. It summary, it was proven the efficiency of the new strengthening technique, and much information can be used as criteria of projects for repaired and strengthened structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, several researchers have shown the good performance of alkali activated slag cement and concretes. Besides their good mechanical properties and durability, this type of cement is a good alternative to Portland cements if sustainability is considered. Moreover, multifunctional cement composites have been developed in the last decades for their functional applications (self-sensing, EMI shielding, self-heating, etc.). In this study, the strain and damage sensing possible application of carbon fiber reinforced alkali activated slag pastes has been evaluated. Cement pastes with 0, 0.29 and 0.58 vol % carbon fiber addition were prepared. Both carbon fiber dosages showed sensing properties. For strain sensing, function gage factors of up to 661 were calculated for compressive cycles. Furthermore, all composites with carbon fibers suffered a sudden increase in their resistivity when internal damages began, prior to any external signal of damage. Hence, this material may be suitable as strain or damage sensor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Different catalysts, based on heteropolyacids supported on activated carbon fibers, have been prepared for palmitic acid esterification reaction. The influence of the catalyst (heteropolyacid) and the support on the catalytic activity have been analyzed. The results prove that an adequate combination of both is required to achieve the most suitable catalysts. Regarding to the heteropolyacid, phosphomolybdic acid seems to be the most suitable appropriate taking into account its lowest leaching. About the support, it must show an optimum microporosity, which must be wide enough to allow the entrance and exit of the reagents and products but not too wide in order to avoid the leaching of the catalyst. In addition, both decreasing of the catalytic activity and its recovery over several cycles have been analyzed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The comparative analysis of the most widely used methods of mesoporosity characterization of two activated carbon fibers is presented. Not only the older methods are used, i.e. Barrett, Joyner and Halenda (BJH), Dubinin (the so-called first variant-D-1ST and the so-called second variant-D-2ND), Dollimore and Heal (DH), and Pierce (P) but the recently developed ones, i.e. the method of Nguyen and Do (ND) and that developed by Do (Do) are also applied. Additionally, the method of the characterization of fractality is put to use (fractal analog of FHH isotherm). The results are compared and discussed. (C) 2002 Elsevier Science B.V. All fights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we present results of the internal structure (pore size and pore wall thickness distributions) of a series of activated carbon fibers with different degrees of burn-off, determined from interpretation of argon adsorption data at 87 K using infinite and finite wall thickness models. The latter approach has recently been developed in our laboratory. The results show that while the low bun-off samples have nearly uniform pore size (

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon nanotubes (CNTs) have been produced by the tunneling of cobalt nanoparticles in carbon fibers that are derived from electrospun polyacrylonitrile (PAN) fibers. During annealing, the PAN fibers transform to a composite of cobalt nanodroplets and carbon fibers. Driven by the high chemical potential of wrinkled graphene platelets and amorphous carbon with respect to graphite, the cobalt nanodroplets are to tunnel in the carbon fibers. When cobalt nanodroplets have an elongated shape, carbon atoms dissolved in the droplets precipitate preferentially and completely at their lateral sides, producing perfect CNTs that form bulk structures. © 2012 Springer-Verlag Berlin Heidelberg.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increased exploitation of carbon fiber reinforced polymers (CFRP) is inevitably bringing about an increase in production scraps and end-of-life components, resulting in a sharp increase in CFRP waste. Therefore, it is of paramount importance to find efficient ways to reintroduce waste into the manufacturing cycle. At present, several recycling methods for treating CFRPs are available, even if all of them still have to be optimized. The step after CFRP recycling, and also the key to build a solid and sustainable CFRP recycling market, is represented by the utilization of Re-CFs. The smartest way to utilize recovered carbon fibers is through the manufacturing of recycled CFRPs, that can be done by re-impregnating the recovered fibers with a new polymeric matrix. Fused Filament Fabrication (FFF) is one of the most widely used additive manufacturing (3D printing) techniques that fabricates parts with a polymeric filament deposition process that allows to produce parts adding material layer-by-layer, only where it is needed, saving energy, raw material cost, and waste. The filament can also contain fillers or reinforcements such as recycled short carbon fibers and this makes it perfectly compliant with the re-application of the shortened recycled CF. Therefore, in this thesis work recycled and virgin carbon fiber reinforced PLA filaments have been initially produced using 5% and 10% of CFs load. Properties and characteristics of the filaments have been determined conducting different analysis (TGA, DMA, DSC). Subsequently the 5%wt. Re-CFs filament has been used to 3D print specimens for mechanical characterization (DMA, tensile test and CTE), in order to evaluate properties of printed PLA composites containing Re-CFs and evaluate the feasibility of Re-CFs in 3D printing application.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We used microwave plasma enhanced chemical vapor deposition (MPECVD) to carbonize an electrospun polyacrylonitrile (PAN) precursor to form carbon fibers. Scanning electron microscopy, Raman spectroscopy, and Fourier transform infrared spectroscopy were used to characterize the fibers at different evolution stages. It was found that MPECVD-carbonized PAN fibers do not exhibit any significant change in the fiber diameter, whilst conventionally carbonized PAN fibers show a 33% reduction in the fiber diameter. An additional coating of carbon nanowalls (CNWs) was formed on the surface of the carbonized PAN fibers during the MPECVD process without the assistance of any metallic catalysts. The result presented here may have a potential to develop a novel, economical, and straightforward approach towards the mass production of carbon fibrous materials containing CNWs. © 2013 American Institute of Physics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

OBJECTIVE: The aim of this study was to evaluate the morphology of glass (GF), carbon (CF) and glass/carbon (G/CF) fiber posts and their bond strength to self or dual-cured resin luting agents. MATERIAL AND METHODS: Morphological analysis of each post type was conducted under scanning electron microscopy (SEM). Bond strength was evaluated by microtensile test after bisecting the posts and re-bonding the two halves with the luting agents. Data were subjected to two-way ANOVA and Tukey's test (α=0.05). Failure modes were evaluated under optical microscopy and SEM. RESULTS: GF presented wider fibers and higher amount of matrix than CF, and G/CF presented carbon fibers surrounded by glass fibers, and both involved by matrix. For CF and GF, the dual-cured material presented significantly higher (p<0.05) bond strength than the self-cured agent. For the dual agent, CF presented similar bond strength to GF (p>0.05), but higher than that of G/CF (p<0.05). For the self-cured agent, no significant differences (p>0.05) were detected, irrespective of the post type. For GF and G/CF, all failures were considered mixed, while a predominance of adhesive failures was detected for CF. CONCLUSION: The bonding between fiber posts and luting agents was affected by the type of fibers and polymerization mode of the cement. When no surface treatment of the post is performed, the bonding between glass fiber post and dual-cured agent seems to be more reliable.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The electrochemical performance of carbon fibers (CF) and boron-doped diamond electrodes grown on carbon fiber substrate (BDD/CF) was studied. CF substrates were obtained from polyacrylonitrile precursor heat treated at two different temperatures of 1000 and 2000 degrees C to produce the desirable CF carbon graphitization index. This graphitization process influenced the CF conductivity and its chemical surface, also analyzed from X-ray photoelectron spectroscopy measurements. These three-dimensional CF structures allowed a high incorporation of diamond films compared to other carbon substrates such as glass carbon or HOPG. The electrochemical responses, from these four classes of electrodes, were evaluated focusing their application as electrical double-layer capacitors using cyclic voltammetry and impedance measurements. Cyclic voltammetry results revealed that the electrode formed from BDD grown on CF-2000 presented a typical capacitor behavior with the best rectangular shape, compared to those electrodes of CF or BDD/CF-1000. Furthermore, the BDD/CF-2000 electrode presented the lowest impedance, associated to its significant capacitance value of 1940 mu F/cm(2) taking into account the BDD films. This behavior was attributed to the strong dependence between diamond coating texture and the CF graphitization temperature. The largest surface area of BDD/CF-2000 was promoted by its singular film growth mechanism associated to the substrate chemical surface. (c) 2008 Elsevier B.V. All rights reserved.