998 resultados para carbon credits
Resumo:
Reduction of carbon emissions is of paramount importance in the context of global warming. Countries and global companies are now engaged in understanding systematic ways of achieving well defined emission targets. In fact, carbon credits have become significant and strategic instruments of finance for countries and global companies. In this paper, we formulate and suggest a solution to the carbon allocation problem, which involves determining a cost minimizing allocation of carbon credits among different emitting agents. We address this challenge in the context of a global company which is faced with the challenge of determining an allocation of carbon credit caps among its divisions in a cost effective way. The problem is formulated as a reverse auction problem where the company plays the role of a buyer or carbon planning authority and the different divisions within the company are the emitting agents that specify cost curves for carbon credit reductions. Two natural variants of the problem: (a) with unlimited budget and (b) with limited budget are considered. Suitable assumptions are made on the cost curves and in each of the two cases we show that the resulting problem formulation is a knapsack problem that can be solved optimally using a greedy heuristic. The solution of the allocation problem provides critical decision support to global companies engaged seriously in green programs.
Resumo:
The proposed plan for enrichment of the Sulu Sea, Philippines, a region of rich marine biodiversity, with thousands of tonnes of urea in order to stimulate algal blooms and sequester carbon is flawed for multiple reasons. Urea is preferentially used as a nitrogen source by some cyanobacteria and dinoflagellates, many of which are neutrally or positively buoyant. Biological pumps to the deep sea are classically leaky, and the inefficient burial of new biomass makes the estimation of a net loss of carbon from the atmosphere questionable at best. The potential for growth of toxic dinoflagellates is also high, as many grow well on urea and some even increase their toxicity when grown on urea. Many toxic dinoflagellates form cysts which can settle to the sediment and germinate in subsequent years, forming new blooms even without further fertilization. If large-scale blooms do occur, it is likely that they will contribute to hypoxia in the bottom waters upon decomposition. Lastly, urea production requires fossil fuel usage, further limiting the potential for net carbon sequestration. The environmental and economic impacts are potentially great and need to be rigorously assessed. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
International carbon credit markets are based in differences between developing and developed countries greenhouse gases emissions mitigation costs and technological limits faced by developed countries. Potential of energy efficiency measures to reduce fossil fuel usage in Brazilian industrial segments is assessed, and analysis of such potentials singles out those segments and regions more apt to generate carbon credits through Clean Development Mechanism (CDM) projects. Though there are currently few Brazilian CDM projects, their number may be significantly increased, which is a positive outcome. For this purpose, it is crucial that energy conservation programs estimate how CDM may improve their economic competitiveness.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The purpose of this study is to carry on a thermoeconomic analysis at a biodiesel production plant considering the irreversibilities in each step (part I: biodiesel plant under study and functional thermoeconomic diagram [1]), making it possible to calculate the thermoeconomic cost in US$/kWh and US$/l of the biodiesel production, and the main byproduct generated, glycerin, incorporating the credits for the CO2 that is not emitted into the atmosphere (carbon credits). Assuming a sale price for both the biodiesel and the byproduct (glycerin), the annual revenue of the total investment in a plant with a capacity of 8000 t/year of biodiesel operating at 8000 h/year was calculated. The variables that directly or indirectly influence the final thermoeconomic cost include total annual biodiesel production, hours of operation, manufacturing exergy cost, molar ratio in the transesterification reaction, reaction temperature and pressure in the process. Depending on the increase or decrease in sale prices for both biodiesel and glycerin, the payback is going to significantly increase or decrease. It is evident that, in exergy terms, the sale of glycerin is of vital importance in order to reduce the biodiesel price, getting a shorter payback period for the plant under study. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
This paper critically analyses the proposed Australian regulatory approach to the crediting of biological sequestration activities (biosequestration) under the Australian Carbon Farming Initiative and its interaction with State-based carbon rights, the national carbon-pricing mechanism, and the international Kyoto Protocol and carbon-trading markets. Norms and principles have been established by the Kyoto Protocol to guide the creation of additional, verifiable, and permanent credits from biosequestration activities. This paper examines the proposed arrangements under the Australian Carbon Farming Initiative and Carbon Pricing Mechanism to determine whether they are consistent with those international norms and standards. This paper identifies a number of anomalies associated with the legal treatment of additionality and permanence and issuance of carbon credits within the Australian schemes. In light of this, the paper considers the possible legal implications for the national and international transfer, surrender and use of these offset credits.
Resumo:
One of the ways in which indigenous communities seek justice is through the formal recognition of their sovereign rights to land. Such recognition allows indigenous groups to maintain a physical and spiritual connection with their land and continue customary management of their land. Indigenous groups world over face significant hurdles in getting their customary rights to land recognized by legal systems. One of the main difficulties for indigenous groups in claiming customary land rights is the existence of a range of conflicting legal entitlements attaching to the land in question. In Australia, similar to New Zealand and Canada legal recognition to customary land is recognized through a grant of native title rights or through the establishment of land use agreement. In other jurisdictions such as Indonesia and Papua New Guinea a form of customary land title has been preserved and is recognized by the legal system. The implementation of REDD+ and other forms of forest carbon investment activities compounds the already complex arrangements surrounding legal recognition of customary land rights. Free, prior and informed consent of indigenous groups is essential for forest carbon investment on customary land. The attainment of such consent in practice remains challenging due to the number of conflicting interests often associated with forested land. This paper examines Australia’s experience in recongising indigenous land rights under its International Forest Carbon Initiative and under its domestic Carbon Credits (Carbon Farming Initiative) Act (Australia) 2011. Australia’s International Forest Carbon initiative has a budget of $273 million dollars. In 2008 the governments of Australia and Indonesia signed the Indonesia-Australia Forest Carbon Partnership Agreement. This paper will examine the indigenous land tenure and justice lessons learned from the implementation of the Kalimantan Forest and Climate Partnership (KFCP). The KFCP is $30 million dollar project taking place over 120,000 hectares of degraded and forested peatland in Central Kalimantan, Indonesia. The KFCP project site contains seven villages of the Dayak Ngdu indigenous people. In 2011 Australia established a domestic Forest Carbon Initiative, which seeks to provide new economic opportunities for farmers, forest growers and indigenous landholders while helping the environmental by reducing carbon pollution. This paper will explore the manner in which indigenous people are able to participate within these scheme noting the limits and opportunities in deriving co-benefits for indigenous people in Australia under this scheme.
Resumo:
Biosequestration of carbon in trees, forests and vegetation is a key method for offsetting greenhouse gas emissions. To facilitate it, the Commonwealth has introduced the Carbon Farming Initiative, a scheme whereby carbon credits can be earned for biosequestration offsets projects. The project proponent must acquire under state law a ‘carbon sequestration right’ which confers the benefit of the sequestered carbon on the land. Each State provides for an agreement associated with the carbon sequestration right between the landowner and the holder of the right (‘carbon sequestration agreement’). This article identifies some key risks and issues that must be considered in the drafting of a carbon sequestration agreement to support the successful operation of a biosequestration offsets project.
Resumo:
Biosequestration of carbon in trees, forests and vegetation is a key method for mitigating climate change in Australia. To facilitate this, all States have enacted legislation for carbon sequestration rights, separating commercial rights in carbon from ownership of the land, trees and vegetation in which the carbon is sequestered. Ownership of carbon sequestration rights under state law is a prerequisite for the issue of carbon credits to proponents of ‘eligible sequestration offsets projects’ under the Carbon Credits (Carbon Farming Initiative) Act 2011 (Cth) (‘Carbon Farming Act’). This article examines the extent to which current State carbon sequestration rights support the offsets regime established by the Carbon Farming Act. The Commonwealth Act is concerned with allocating responsibilities to ensure the maintenance of the carbon sequestration, while the State Acts confer commercial rights in the carbon and leave the responsibilities to be allocated by private agreements. The carbon sequestration rights as defined by state laws do not confer the rights of access and management over land that a project proponent needs in order to discharge its responsibilities to maintain the carbon sequestration.
Resumo:
Rangelands store about 30% of the world’s carbon and support over 120 million pastoralists globally. Adjusting the management of remote alpine pastures bears a substantial climate change mitigation potential that can provide livelihood support for marginalized pastoralists through carbon payment. Landless pastoralists in Northern Pakistan seek higher income by cropping potatoes and peas over alpine pastures. However, tilling steep slopes without terracing exposes soil to erosion. Moreover, yields decline rapidly requiring increasing fertilizer inputs. Under these conditions, carbon payment could be a feasible option to compensate pastoralists for renouncing hazardous cropping while favoring pastoral activities. The study quantifies and compares C on cropped and grazed land. The hypothesis was that cropping on alpine pastures reduces former carbon storage. The study area located in the Naran valley of the Pakistani Himalayas receives an annual average of 819 mm of rain and 764 mm of snow. Average temperatures remain below 0°C from November to March while frost may occur all year round. A total of 72 soil core samples were collected discriminating land use (cropping, pasture), aspect (North, South), elevation (low 3000, middle 3100, and high 3200 m a.s.l.), and soil depth (shallow 0-10, deep 10-30 cm). Thirty six biomass samples were collected over the same independent variables (except for soil depth) using a 10x10x20 cm steal box inserted in the ground for each sample. Aboveground biomass and coarse roots were separated from the soil aggregate and oven-dried. Soil organic carbon (SOC) and biomass carbon (BC) were estimated through a potassium dichromate oxidation treatment. The samples were collected during the second week of October 2010 at the end of the grazing and cropping season and before the first snowfall. The data was statistically analyzed by means of a one-way analysis of variance. Results show that all variables taken separately have a significant effect on mean SOC [%]: crop/pasture 1.33/1.6, North/South 1.61/1.32, low/middle/high 1.09/1.62/1.68, shallow/deep 1.4/1.53. However, for BC, only land use has a significant effect with more than twice the amount of carbon in pastures [g m-2]: crop/pasture 127/318. These preliminary findings suggest that preventing the conversion of pastures into cropping fields in the Naran valley avoids an average loss of 12.2 t C ha-1 or 44.8 t CO2eq ha-1 representing a foreseeable compensation of 672 € ha-1 for the Naran landless pastoralists who would renounce cropping. The ongoing study shall provide a complete picture for carbon payment integrating key aspects such as the rate of cropping encroachment over pastures per year, the methane leakage from the system due to livestock enteric fermentation, the expected cropping income vs. livestock income and the transaction costs of implementing the mitigation project, certifying it, and verifying carbon credits. A net present value over an infinite time horizon for the mitigation scenario shall be estimated on an iterative simulation to consider weather and price uncertainties. The study will also provide an estimate of the minimum price of carbon at which pastoralists would consider engaging in the mitigation activity.
Resumo:
Recent findings demonstrate that trees in deserts are efficient carbon sinks. It remains however unknown whether the Clean Development Mechanism will accelerate the planting of trees in Non Annex I dryland countries. We estimated the price of carbon at which a farmer would be indifferent between his customary activity and the planting of trees to trade carbon credits, along an aridity gradient. Carbon yields were simulated by means of the CO2FIX v3.1 model for Pinus halepensis with its respective yield classes along the gradient (Arid – 100mm to Dry Sub Humid conditions – 900mm). Wheat and pasture yields were predicted on somewhat similar nitrogen-based quadratic models, using 30 years of weather data to simulate moisture stress. Stochastic production, input and output prices were afterwards simulated on a Monte Carlo matrix. Results show that, despite the high levels of carbon uptake, carbon trading by afforesting is unprofitable anywhere along the gradient. Indeed, the price of carbon would have to raise unrealistically high, and the certification costs would have to drop significantly, to make the Clean Development Mechanism worthwhile for non annex I dryland countries farmers. From a government agency's point of view the Clean Development Mechanism is attractive. However, such agencies will find it difficult to demonstrate “additionality”, even if the rule may be somewhat flexible. Based on these findings, we will further discuss why the Clean Development Mechanism, a supposedly pro-poor instrument, fails to assist farmers in Non Annex I dryland countries living at minimum subsistence level.
Resumo:
This article discusses the Carbon Credit Trading Market in Brazil and opportunities for technological development and innovation related. The international trade in carbon credits becomes a source of opportunities for developing countries because of the Clean Development Mechanism. Committed to reduce polluting levels from 2008 to 2012, and ahead, industrialized countries started to seek ecological solutions internally or compensatory actions such as buying carbon credits from low-emission countries. This strategy brought up a brand-new industrial sector that still requires productive structures and a solid international commercialization system. This is a qualitative study, based on documentary research, referring to the Brazilian territory. The data obtained point out a set of efforts such as researching and developing products and processes environment friendly. Other findings indicate opportunities to expand Green Economy Sector through supporting a set of newborn firms such as waste management and recycling, in addition to other actions that reinforce sustainable development opportunities to the country and, at the end, to the world.
Resumo:
The Clean Development Mechanism (CDM), Article 12 of the Kyoto Protocol allows Afforestation and Reforestation (A/R) projects as mitigation activities to offset the CO2 in the atmosphere whilst simultaneously seeking to ensure sustainable development for the host country. The Kyoto Protocol was ratified by the Government of India in August 2002 and one of India's objectives in acceding to the Protocol was to fulfil the prerequisites for implementation of projects under the CDM in accordance with national sustainable priorities. The objective of this paper is to assess the effectiveness of using large-scale forestry projects under the CDM in achieving its twin goals using Karnataka State as a case study. The Generalized Comprehensive Mitigation Assessment Process (GCOMAP) Model is used to observe the effect of varying carbon prices on the land available for A/R projects. The model is coupled with outputs from the Lund-Potsdam-Jena (LPJ) Dynamic Global Vegetation Model to incorporate the impacts of temperature rise due to climate change under the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A2, A1B and B1. With rising temperatures and CO2, vegetation productivity is increased under A2 and A1B scenarios and reduced under B1. Results indicate that higher carbon price paths produce higher gains in carbon credits and accelerate the rate at which available land hits maximum capacity thus acting as either an incentive or disincentive for landowners to commit their lands to forestry mitigation projects. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Introduction of agriculture three millennia ago in Peninsular India’s Western Ghats altered substantially ancient tropical forests. Early agricultural communities, nevertheless, strived to attain symbiotic harmony with nature as evident from prevalence of numerous sacred groves, patches of primeval forests sheltering biodiversity and hydrology. Groves enhanced heterogeneity of landscapes involving elements of successional forests and savannas favouring rich wildlife. A 2.25 km2 area of relic forest was studied at Kathalekan in Central Western Ghats. Interspersed with streams studded with Myristica swamps and blended sparingly with shifting cultivation fallows, Kathalekan is a prominent northernmost relic of southern Western Ghat vegetation. Trees like Syzygium travancoricum (Critically Endangered), Myristica magnifica (Endangered) and Gymnacranthera canarica (Vulnerable) and recently reported Semecarpus kathalekanensis, are exclusive to stream/swamp forest (SSF). SSF and non-stream/swamp forest (NSSF) were studied using 18 transects covering 3.6 ha. Dipterocarpaceae, its members seldom transgressing tropical rain forests, dominate SSF (21% of trees) and NSSF (27%). The ancient Myristicaceae ranks high in tree population (19% in SSF and 8% in NSSF). Shannon-Weiner diversity for trees is higher (>3) in six NSSF transects compared to SSF (<3). Higher tree endemism (45%), total endemic tree population (71%) and significantly higher above ground biomass (349 t/ha) cum carbon sequestration potential (131 t/ha) characterizes SSF. Faunal richness is evident from amphibians (35 species - 26 endemics, 11 in IUCN Red List). This study emphasizes the need for bringing to light more of relic forests for their biodiversity, carbon sequestration and hydrology. The lives of marginal farmers and forest tribes can be uplifted through partnership in carbon credits, by involving them in mitigating global climatic change through conservation and restoration of high biomass watershed forests.
Resumo:
This study is about the challenges of learning in the creation and implementation of new sustainable technologies. The system of biogas production in the Programme of Sustainable Swine Production (3S Programme) conducted by the Sadia food processing company in Santa Catarina State, Brazil, is used as a case example for exploring the challenges, possibilities and obstacles of learning in the use of biogas production as a way to increase the environmental sustainability of swine production. The aim is to contribute to the discussion about the possibilities of developing systems of biogas production for sustainability (BPfS). In the study I develop hypotheses concerning the central challenges and possibilities for developing systems of BPfS in three phases. First, I construct a model of the network of activities involved in the BP for sustainability in the case study. Next, I construct a) an idealised model of the historically evolved concepts of BPfS through an analysis of the development of forms of BP and b) a hypothesis of the current central contradictions within and between the activity systems involved in BP for sustainability in the case study. This hypothesis is further developed through two actual empirical analyses: an analysis of the actors senses in taking part in the system, and an analysis of the disturbance processes in the implementation and operation of the BP system in the 3S Programme. The historical analysis shows that BP for sustainability in the 3S Programme emerged as a feasible solution for the contradiction between environmental protection and concentration, intensification and specialisation in swine production. This contradiction created a threat to the supply of swine to the food processing company. In the food production activity, the contradiction was expressed as a contradiction between the desire of the company to become a sustainable company and the situation in the outsourced farms. For the swine producers the contradiction was expressed between the contradictory rules in which the market exerted pressure which pushed for continual increases in scale, specialisation and concentration to keep the production economically viable, while the environmental rules imposed a limit to this expansion. Although the observed disturbances in the biogas system seemed to be merely technical and localised within the farms, the analysis proposed that these disturbances were formed in and between the activity systems involved in the network of BPfS during the implementation. The disturbances observed could be explained by four contradictions: a) contradictions between the new, more expanded activity of sustainable swine production and the old activity, b) a contradiction between the concept of BP for carbon credits and BP for local use in the BPfS that was implemented, c) contradictions between the new UNFCCC1 methodology for applying for carbon credits and the small size of the farms, and d) between the technologies of biogas use and burning available in the market and the small size of the farms. The main finding of this study relates to the zone of proximal development (ZPD) of the BPfS in Sadia food production chain. The model is first developed as a general model of concepts of BPfS and further developed here to the specific case of the BPfS in the 3S Programme. The model is composed of two developmental dimensions: societal and functional integration. The dimension of societal integration refers to the level of integration with other activities outside the farm. At one extreme, biogas production is self-sufficient and highly independent and the products of BP are consumed within the farm, while at the other extreme BP is highly integrated in markets and networks of collaboration, and BP products are exchanged within the markets. The dimension of functional integration refers to the level of integration between products and production processes so that economies of scope can be achieved by combining several functions using the same utility. At one extreme, BP is specialised in only one product, which allows achieving economies of scale, while at the other extreme there is an integrated production in which several biogas products are produced in order to maximise the outcomes from the BP system. The analysis suggests that BP is moving towards a societal integration, towards the market and towards a functional integration in which several biogas products are combined. The model is a hypothesis to be further tested through interventions by collectively constructing the new proposed concept of BPfS. Another important contribution of this study refers to the concept of the learning challenge. Three central learning challenges for developing a sustainable system of BP in the 3S Programme were identified: 1) the development of cheaper and more practical technologies of burning and measuring the gas, as well as the reduction of costs of the process of certification, 2) the development of new ways of using biogas within farms, and 3) the creation of new local markets and networks for selling BP products. One general learning challenge is to find more varied and synergic ways of using BP products than solely for the production of carbon credits. Both the model of the ZPD of BPfS and the identified learning challenges could be used as learning tools to facilitate the development of biogas production systems. The proposed model of the ZPD could be used to analyse different types of agricultural activities that face a similar contradiction. The findings could be used in interventions to help actors to find their own expansive actions and developmental projects for change. Rather than proposing a standardised best concept of BPfS, the idea of these learning tools is to facilitate the analysis of local situations and to help actors to make their activities more sustainable.