938 resultados para capacity of load support


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study of conveying practice demonstrates that belt conveyors provide a versatile and. much-used method of transporting bulk materials, but a review of belting manufacturers' design procedures shows that belt design and selection rules are often based on experience with all-cotton belts no longer in common use, and are net completely relevant to modern synthetic constructions. In particular, provision of the property "load support", which was not critical with cotton belts, is shown to determine the outcome of most belt selection exercises and lead to gross over specification of other design properties in many cases. The results of an original experimental investigation into this property, carried out to determine the belt and conveyor parameters that affect it, how the major role that belt stiffness plays in its provision; the basis for a belt stiffness test relevant to service conditions is given. A proposal for a more rational method of specifying load support data results from the work, but correlation of the test results with service performance is necessary before the absolute toad support capability required from a belt for given working conditions can be quantified. A study to attain this correlation is the major proposal for future work resulting from the present investigation, but a full review of the literature on conveyor design and a study of present practice within the belting industry demonstrate other, less critical, factors that could profitably be investigated. It is suggested that the most suitable method of studying these would be a rational data collection system to provide information on various facets of belt service behaviour; a basis for such a system is proposed. In addition to the work above, proposals for simplifying the present belt selection methods are made and a strain transducer suitable for use in future experimental investigations is developed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Os efeitos do tráfego de máquinas nos atributos do solo de acordo com o tempo de adoção do sistema plantio direto são ainda pouco pesquisados em ambientes tropicais, e muitas dúvidas ainda persistem sobre a variação dinâmica da estrutura do solo e a sua interação com máquinas e equipamentos. Objetivou-se com este estudo avaliar o efeito do tempo de adoção do sistema plantio direto, comparativamente com área de mata nativa e de preparo convencional, usando os modelos de compressibilidade do solo. O estudo foi realizado em um Nitossolo Vermelho distroférrico, sob mata nativa (MN), preparo convencional (PC), plantio direto com um ano (PD1), plantio direto com quatro anos (PD4), plantio direto com cinco anos (PD5) e plantio direto com 12 anos (PD12). Amostras indeformadas e deformadas foram coletadas em duas profundidades (0-5 e 10-15 cm). O tempo de adoção do sistema plantio direto alterou o comportamento compressivo dos solos em ambas as profundidades, por meio das mudanças na pressão de preconsolidação. A profundidade de 0-5 cm apresentou menor capacidade de suporte de carga do que a profundidade de 10-15 cm. A profundidade de 0-5 cm, em todos os sistemas de manejo, mostrou-se mais susceptível à compactação em relação à profundidade de 10-15 cm. Os sistemas de plantio direto e convencional apresentaram a capacidade de suporte de carga crescente na seguinte ordem: PD5 < PD12 < PD1 < PD4 @ PC, para a profundidade de 0-5 cm e para a profundidade de 10-15 cm: MN @ PD12 < PC @ PD4 < PD5, enquanto o sistema PD1 apresentou comportamento diferenciado.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bearing failure is a form of localized failure that occurs when thin-walled cold-formed steel sections are subjected to concentrated loads or support reactions. To determine the bearing capacity of cold-formed channel sections, a unified design equation with different bearing coefficients is given in the current North American specification AISI S100 and the Australian/New Zealand standard AS/NZS 4600. However, coefficients are not available for unlipped channel sections that are normally fastened to supports through their flanges. Eurocode 3 Part 1.3 includes bearing capacity equations for different load cases, but does not distinguish between fastened and unfastened support conditions. Therefore, an experimental study was conducted to determine the bearing capacities of these sections as used in floor systems. Twenty-eight web bearing tests on unlipped channel sections with restrained flanges were conducted under End One Flange (EOF) and Interior One Flange (IOF) load cases. Using the results from this study, a new equation was proposed within the AISI S100 and AS/NZS 4600 guidelines to determine the bearing capacities of cold-formed unlipped channels with flanges fastened to supports. A new design rule was also proposed based on the direct strength method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reinforced concrete structures are susceptible to a variety of deterioration mechanisms due to creep and shrinkage, alkali-silica reaction (ASR), carbonation, and corrosion of the reinforcement. The deterioration problems can affect the integrity and load carrying capacity of the structure. Substantial research has been dedicated to these various mechanisms aiming to identify the causes, reactions, accelerants, retardants and consequences. This has improved our understanding of the long-term behaviour of reinforced concrete structures. However, the strengthening of reinforced concrete structures for durability has to date been mainly undertaken after expert assessment of field data followed by the development of a scheme to both terminate continuing degradation, by separating the structure from the environment, and strengthening the structure. The process does not include any significant consideration of the residual load-bearing capacity of the structure and the highly variable nature of estimates of such remaining capacity. Development of performance curves for deteriorating bridge structures has not been attempted due to the difficulty in developing a model when the input parameters have an extremely large variability. This paper presents a framework developed for an asset management system which assesses residual capacity and identifies the most appropriate rehabilitation method for a given reinforced concrete structure exposed to aggressive environments. In developing the framework, several industry consultation sessions have been conducted to identify input data required, research methodology and output knowledge base. Capturing expert opinion in a useable knowledge base requires development of a rule based formulation, which can subsequently be used to model the reliability of the performance curve of a reinforced concrete structure exposed to a given environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Constructing buildings using slip formed load bearing wall panels is becoming increasingly popular in Sri Lanka due to several advantages; low cost, environmental friendliness and rapid construction technique. These wall panels are already successfully implemented in many low rise buildings. However, the seismic capacities of these buildings have not been properly studied. Few seismic activities reported in Sri Lanka have not caused severe structural damage, but predictions can not be made as to whether this will continue to be the case in the future. This highlights the need to study the seismic capacity of buildings constructed in slip formed load bearing wall panels. This paper presents a study of the seismic capacity of the existing medium rise building.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A full-scale experimental study on the structural performance of load-bearing wall panels made of cold-formed steel frames and boards is presented. Six different types of C-channel stud, a total of 20 panels with one middle stud and 10 panels with two middle studs were tested under vertical compression until failure. For panels, the main variables considered are screw spacing (300 mm, 400 mm, or 600 mm) in the middle stud, board type (oriented strand board - OSB, cement particle board - CPB, or calcium silicate board - CSB), board number (no sheathing, one-side sheathing, or two-side sheathing), and loading type (1, 3, or 4-point loading). The measured load capacity of studs and panels agrees well with analytical prediction. Due to the restraint by rivet connections between stud and track, the effective length factor for the middle stud and the side stud in a frame (unsheathed panel) is reduced to 0.90 and 0.84, respectively. The load carrying capacity of a stud increases significantly whenever one- or two-side sheathing is used, although the latter is significantly more effective. It is also dependent upon the type of board used. Whereas panels with either OSB or CPB boards have nearly identical load carrying capacity, panels with CSB boards are considerably weaker. Screw spacing affects the load carrying capacity of a stud. When the screw spacing on the middle stud in panels with one-side sheathing is reduced from 600 mm to 300 mm, its load carrying capacity increases by 14.5 %, 20.6% and 94.2% for OSB, CPB and CSB, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Catalysts with various nickel loads were prepared on supports of ZrO2, ZrO2-Y2O3 and ZrO2-CaO, characterized by XRD and TPR and tested for activity in ethanol steam reforming. XRD of the supports identified the monoclinic crystalline phase in the ZrO2 and cubic phases in the ZrO2-Y2O3 and ZrO2-CaO supports. In the catalysts, the nickel impregnated on the supports was identified as the NiO phase. In the TPR analysis, peaks were observed showing the NiO phase having different interactions with the supports. In the catalytic tests, practically all the catalysts achieved 100% ethanol conversion, H-2 yield was near 70% and the gaseous concentrations of the other co-products varied in accordance with the equilibrium among them, affected principally by the supports. It was observed that when the ZrO2 was modified with Y2O3 and CaO, there were big changes in the CO and CO2 concentrations, which were attributed to the rise in the number of oxygen vacancies, permitting high-oxygen mobility and affecting the gaseous equilibrium. The liquid products analysis showed a low selectivity to liquid co-products during the reforming reactions. (c) 2007 Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The contact load-bearing response and surface damage resistance of multilayered hierarchical structured (MHSed) titanium were determined and compared to monolithic nanostructured titanium. The MHS structure was formed by combining cryorolling with a subsequent Surface Mechanical Attrition Treatment (SMAT) producing a surface structure consisted of an outer amorphous layer containing nanocrystals, an inner nanostructured layer and finally an ultra-fine grained core. The combination of a hard outer layer, a gradual transition layer and a compliant core results in reduced indentation depth, but a deeper and more diffuse sub-surface plastic deformation zone, compared to the monolithic nanostructured Ti. The redistribution of surface loading between the successive layers in the MHS Ti resulted in the suppression of cracking, whereas the monolithic nanograined (NG) Ti exhibited sub-surface cracks at the boundary of the plastic strain field. Finite element models with discrete layers and mechanically graded layersrepresenting the MHS system confirmed the absence of cracking and revealed a 38% decrease in shear stress in the sub-surface plastic strain field, compared to the monolithic NG Ti. Further, the mechanical gradation achieves a more gradual stress distribution which mitigates the interface failure and increases the interfacial toughness, thus providing strong resistance to loading damage. © 2014 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This review article aims to evaluate a proposed maximum acceptable work duration model for load carriage tasks. It is contended that this concept has particular relevance to physically demanding occupations such as military and firefighting. Personnel in these occupations are often required to perform very physically demanding tasks, over varying time periods, often involving load carriage. Previous research has investigated concepts related to physiological workload limits in occupational settings (e.g. industrial). Evidence suggests however, that existing (unloaded) workload guidelines are not appropriate for load carriage tasks. The utility of this model warrants further work to enable prediction of load carriage durations across a range of functional workloads for physically demanding occupations. If the maximum duration for which personnel can physiologically sustain a load carriage task could be accurately predicted, commanders and supervisors could better plan for and manage tasks to ensure operational imperatives were met whilst minimising health risks for their workers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electric power grids throughout the world suffer from serious inefficiencies associated with under-utilization due to demand patterns, engineering design and load following approaches in use today. These grids consume much of the world’s energy and represent a large carbon footprint. From material utilization perspectives significant hardware is manufactured and installed for this infrastructure often to be used at less than 20-40% of its operational capacity for most of its lifetime. These inefficiencies lead engineers to require additional grid support and conventional generation capacity additions when renewable technologies (such as solar and wind) and electric vehicles are to be added to the utility demand/supply mix. Using actual data from the PJM [PJM 2009] the work shows that consumer load management, real time price signals, sensors and intelligent demand/supply control offer a compelling path forward to increase the efficient utilization and carbon footprint reduction of the world’s grids. Underutilization factors from many distribution companies indicate that distribution feeders are often operated at only 70-80% of their peak capacity for a few hours per year, and on average are loaded to less than 30-40% of their capability. By creating strong societal connections between consumers and energy providers technology can radically change this situation. Intelligent deployment of smart sensors, smart electric vehicles, consumer-based load management technology very high saturations of intermittent renewable energy supplies can be effectively controlled and dispatched to increase the levels of utilization of existing utility distribution, substation, transmission, and generation equipment. The strengthening of these technology, society and consumer relationships requires rapid dissemination of knowledge (real time prices, costs & benefit sharing, demand response requirements) in order to incentivize behaviors that can increase the effective use of technological equipment that represents one of the largest capital assets modern society has created.