6 resultados para capabilidade
Resumo:
Este artigo questiona a validade de estimativas de incerteza (dispersão, variância e seus correlatos, como precisão, desvio padrão, etc.) de medição e incerteza de amostragem, bem como sua validade em verificações de conformidade. Obteve tendências de acréscimo ou comportamento em leque em micotoxinas, sódio, óleos graxos e curvas de calibração para carotenoides em ensaios de proficiência, experimentos de precisão de instituições consagradas ou acreditadas e curvas de calibração, o que invalida diversas estimativas de incerteza de medição. Questionou e recalculou resultados do Guia de Incerteza de Amostragem, demonstrando inadequações teóricas e concluiu por sua invalidade. Propôs sistema de estimação voltada para o alimento/processo que se pesquisa através de plano amostral normalizado ou especificamente elaborado para fim de verificação de conformidade. Finalmente, traz as regras decisórias estocásticas para verificação de conformidade em alimentos e diversos outros produtos.
Resumo:
Este trabalho analisa a correlação entre a gestão da tecnologia de produtos e processos e a gestão ambiental em empresas de manufatura. Partindo de um modelo conceitual simplificado e desdobramentos das dimensões gestão da tecnologia e gestão ambiental, foi possível analisar em pesquisa de campo vários conceitos disponíveis na literatura para esses dois campos, envolvendo 78 empresas do setor de manufaturados, através de projeto de pesquisa survey e projeto de pesquisa qualitativa. Visando avaliar a capabilidade tecnológica das organizações, foram usados os conceitos de microtecnologia e macrotecnologia relatados em Silva (2003). Concluiu-se que, dentro do campo pesquisado de empresas, existe correlação positiva entre os níveis de capabilidade tecnológica e os níveis de capabilidade ambiental.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Skeletal muscle consists of muscle fiber types that have different physiological and biochemical characteristics. Basically, the muscle fiber can be classified into type I and type II, presenting, among other features, contraction speed and sensitivity to fatigue different for each type of muscle fiber. These fibers coexist in the skeletal muscles and their relative proportions are modulated according to the muscle functionality and the stimulus that is submitted. To identify the different proportions of fiber types in the muscle composition, many studies use biopsy as standard procedure. As the surface electromyography (EMGs) allows to extract information about the recruitment of different motor units, this study is based on the assumption that it is possible to use the EMG to identify different proportions of fiber types in a muscle. The goal of this study was to identify the characteristics of the EMG signals which are able to distinguish, more precisely, different proportions of fiber types. Also was investigated the combination of characteristics using appropriate mathematical models. To achieve the proposed objective, simulated signals were developed with different proportions of motor units recruited and with different signal-to-noise ratios. Thirteen characteristics in function of time and the frequency were extracted from emulated signals. The results for each extracted feature of the signals were submitted to the clustering algorithm k-means to separate the different proportions of motor units recruited on the emulated signals. Mathematical techniques (confusion matrix and analysis of capability) were implemented to select the characteristics able to identify different proportions of muscle fiber types. As a result, the average frequency and median frequency were selected as able to distinguish, with more precision, the proportions of different muscle fiber types. Posteriorly, the features considered most able were analyzed in an associated way through principal component analysis. Were found two principal components of the signals emulated without noise (CP1 and CP2) and two principal components of the noisy signals (CP1 and CP2 ). The first principal components (CP1 and CP1 ) were identified as being able to distinguish different proportions of muscle fiber types. The selected characteristics (median frequency, mean frequency, CP1 and CP1 ) were used to analyze real EMGs signals, comparing sedentary people with physically active people who practice strength training (weight training). The results obtained with the different groups of volunteers show that the physically active people obtained higher values of mean frequency, median frequency and principal components compared with the sedentary people. Moreover, these values decreased with increasing power level for both groups, however, the decline was more accented for the group of physically active people. Based on these results, it is assumed that the volunteers of the physically active group have higher proportions of type II fibers than sedentary people. Finally, based on these results, we can conclude that the selected characteristics were able to distinguish different proportions of muscle fiber types, both for the emulated signals as to the real signals. These characteristics can be used in several studies, for example, to evaluate the progress of people with myopathy and neuromyopathy due to the physiotherapy, and also to analyze the development of athletes to improve their muscle capacity according to their sport. In both cases, the extraction of these characteristics from the surface electromyography signals provides a feedback to the physiotherapist and the coach physical, who can analyze the increase in the proportion of a given type of fiber, as desired in each case.