949 resultados para canaux voltage-dépendants


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les canaux potassiques dépendants du voltage sont formés de quatre sous-unités, chacune possédant six segments transmembranaires (S1-S6) et une boucle (p-loop) qui se trouve entre le cinquième et le sixième segment au niveau du pore. Il est connu que le segment senseur du voltage (S1-S4) subit un mouvement lorsque le potentiel membranaire change. Pour ouvrir le canal, il est nécessaire de transférer l'énergie du senseur du voltage (généré par le mouvement des charges positives de S4) au pore. Le mécanisme exact de ce couplage électromécanique est encore sous étude. Un des points de liaison entre le senseur de voltage et le pore est le lien physique fait par le segment S4-S5 (S45L). Le but de cette étude est de déterminer l'influence de la flexibilité du segment S45L sur le processus de couplage. Dans le S45L, trois glycines sont distribuées dans des positions différentes. Elles sont responsables de la flexibilité des hélices-alpha. Ces glycines (mais pas leurs positions exactes) sont conservées pour tous les canaux potassiques dépendants de potentiel. En utilisant la technique de mutagènes dirigé, la glycine a été remplacée dans chacune de ces différentes positions par une alanine et dans une deuxième étape, par une proline (pour introduire un angle dans l'hélice). Pour étudier le comportement des canaux dans cette nouvelle conformation, on a appliqué la technique de « patch clamp » pour déterminer les effets lors de l'ouverture du pore (courant ionique). Avec le « cut-open oocyte voltage-clamp », nous avons étudié les effets sur le mouvement du senseur de voltage (courant “gating”) et la coordination temporelle avec l'ouverture du pore (courant ionique). Les données ont montré qu’en réduisant la flexibilité dans le S45L, il faut avoir plus d'énergie pour faire ouvrir le canal. Le changement pour une proline suggère que le mouvement du senseur est indépendant du pore pendant l'ouverture du canal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les canaux potassiques voltage-dépendants forment des tétramères dont chaque sous-unité comporte six segments transmembranaires (S1 à S6). Le pore, formé des segments S5-S6 de chaque sous-unité, est entouré de quatre domaines responsables de la sensibilité au potentiel membranaire, les senseurs de voltage (VS; S1-S4). Lors d’une dépolarisation membranaire, le mouvement des résidus chargés situés dans le VS entraine un mouvement de charges détectable en électrophysiologie, le courant de « gating ». L’activation du VS conduit à l'ouverture du pore, qui se traduit par un changement de conformation en C-terminal du segment S6. Pour élucider les principes qui sous-tendent le couplage électromécanique entre ces deux domaines, nous avons étudié deux régions présumées responsables du couplage chez les canaux de type Shaker K+, soit la région carboxy-terminale du segment S6 et le lien peptidique reliant les segments transmembranaire S4-S5 (S4-5L). Avec la technique du « cut-open voltage clamp fluorometry » (COVCF), nous avons pu déterminer que l’interaction inter-sous-unitaire RELY, formée par des acides aminés situés sur le lien S4-5L et S6 de deux sous-unités voisines, est impliquée dans le développement de la composante lente observée lors du retour des charges de « gating » vers leur état de repos, le « OFF-gating ». Nous avons observé que l’introduction de mutations dans la région RELY module la force de ces interactions moléculaires et élimine l’asymétrie observée dans les courants de « gating » de type sauvage. D’ailleurs, nous démontrons que ce couplage inter-sous-unitaire est responsable de la stabilisation du pore dans l’état ouvert. Nous avons également identifié une interaction intra-sous-unitaire entre les résidus I384 situé sur le lien S4-5L et F484 sur le segment S6 d’une même sous-unité. La déstabilisation de cette interaction hydrophobique découple complètement le mouvement des senseurs de voltage et l'ouverture du pore. Sans cette interaction, l’énergie nécessaire pour activer les VS est moindre en raison de l’absence du poids mécanique appliqué par le pore. De plus, l’abolition du couplage électromécanique élimine également le « mode shift », soit le déplacement de la dépendance au voltage des charges de transfert (QV) vers des potentiels hyperpolarisants. Ceci indique que le poids mécanique du pore imposé au VS entraine le « mode shift », en modulant la conformation intrinsèque du VS par un processus allostérique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les ataxies épisodiques (EA) d’origine génétique sont un groupe de maladies possédant un phénotype et génotype hétérogènes, mais ont en commun la caractéristique d’un dysfonctionnement cérébelleux intermittent. Les EA de type 1 et 2 sont les plus largement reconnues des ataxies épisodiques autosomiques dominantes et sont causées par un dysfonctionnement des canaux ioniques voltage-dépendants dans les neurones. La présente étude se concentrera sur les mutations causant l'EA-1, retrouvées dans le senseur de voltage (VSD) de Kv1.1, un canal très proche de la famille des canaux Shaker. Nous avons caractérisé les propriétés électrophysiologiques de six mutations différentes à la position F244 et partiellement celles des mutations T284 A/M, R297 K/Q/A/H, I320T, L375F, L399I et S412 C/I dans la séquence du Shaker grâce à la technique du ‘’cut open voltage clamp’’ (COVC). Les mutations de la position F244 situées sur le S1 du canal Shaker sont caractérisées par un décalement des courbes QV et GV vers des potentiels dépolarisants et modifient le couplage fonctionnel entre le domaine VSD et le pore. Un courant de fuite est observé durant la phase d'activation des courants transitoires et peut être éliminé par l'application du 4-AP (4-aminopyridine) ou la réinsertion de l'inactivation de type N mais pas par le TEA (tétraéthylamonium). Dans le but de mieux comprendre les mécanismes moléculaires responsables de la stabilisation d’un état intermédiaire, nous avons étudié séparément la neutralisation des trois premières charges positives du S4 (R1Q, R2Q et R3Q). Il en est ressorti l’existence d’une interaction entre R2 et F244. Une seconde interface entre S1 et le pore proche de la surface extracellulaire agissant comme un second point d'ancrage et responsable des courants de fuite a été mis en lumière. Les résultats suggèrent une anomalie du fonctionnement du VSD empêchant la repolarisation normale de la membrane des cellules nerveuses affectées à la suite d'un potentiel d'action.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les syndromes myotoniques congénitaux atypiques dus à des mutations du canal sodé voltage-dépendant Nav1.4 se distinguent des myotonies congénitales classiques (canal chlore ClC-1) par la présence de traits atypiques incluant des myotonies douloureuses aggravées au froid et à l’ingestion de potassium. La caractérisation clinique et moléculaire de plusieurs familles atteintes de ces conditions rares dans la région du Saguenay-Lac-St-Jean nous a permis de découvrir une nouvelle mutation SCN4A à effet fondateur causant un phénotype de myotonies douloureuses aggravées au froid, parfois accompagné de phénomènes dystrophiques ou paralytiques. L’ampleur de notre cohorte nous permet de commenter sur l’hétérogénité phénotypique observée, sur les traits caractéristiques des syndromes associés au gène SCN4A, sur les implications physiologiques probables d’une telle mutation ainsi que sur les facteurs modulant le phénotype observé. Enfin, notre étude nous permet de souligner l’importance du dépistage familial systématique afin de prévenir les complications anesthésiques potentielles associées à ces conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les canaux ioniques dépendants du voltage sont responsables de l'initiation et de la propagation des potentiels d'action dans les cellules excitables. De nombreuses maladies héréditaires (channelopathies) sont associées à un contrôle défectueux du voltage par ces canaux (arythmies, épilepsie, etc.). L’établissement de la relation structure-fonction exacte de ces canaux est donc crucial pour le développement de nouveaux agents thérapeutiques spécifiques. Dans ce contexte, le canal procaryote dépendant du voltage et sélectif au potassium KvAP a servi de modèle d’étude afin d’approfondir i) le processus du couplage électromécanique, ii) l’influence des lipides sur l’activité voltage-dépendante et iii) l’inactivation de type closed-state. Afin de pallier à l’absence de données structurales dynamiques du côté cytosolique ainsi que de structure cristalline dans l’état fermé, nous avons mesuré le mouvement du linker S4-S5 durant le gating par spectroscopie de fluorescence (LRET). Pour ce faire, nous avons utilisé une technique novatrice du contrôle de l’état conformationnel du canal en utilisant les lipides (phospholipides et non phospholipides) au lieu du voltage. Un modèle dans l’état fermé a ainsi été produit et a démontré qu’un mouvement latéral modeste de 4 Å du linker S4-S5 est suffisant pour mener à la fermeture du pore de conduction. Les interactions lipides - canaux jouent un rôle déterminant dans la régulation de la fonction des canaux ioniques mais ne sont pas encore bien caractérisées. Nous avons donc également étudié l’influence de différents lipides sur l’activation voltage - dépendante de KvAP et mis en évidence deux sites distincts d’interactions menant à des effets différents : au niveau du senseur de voltage, menant au déplacement de la courbe conductance-voltage, et du côté intracellulaire, influençant le degré de la pente de cette même courbe. Nous avons également démontré que l’échange de lipides autour de KvAP est extrêmement limité et affiche une dépendance à l’état conformationnel du canal, ne se produisant que dans l’état ouvert. KvAP possède une inactivation lente particulière, accessible depuis l'état ouvert. Nous avons étudié les effets de la composition lipidique et de la température sur l'entrée dans l'état inactivé et le temps de récupération. Nous avons également utilisé la spectroscopie de fluorescence (quenching) en voltage imposé afin d'élucider les bases moléculaires de l’inactivation de type closed-state. Nous avons identifié une position à la base de l’hélice S4 qui semble impliquée à la fois dans le mécanisme responsable de ce type d'inactivation et dans la récupération particulièrement lente qui est typique du canal KvAP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les canaux sodiques dépendants du voltage (Nav) sont des protéines transmembranaires largement exprimées au sein de l’organisme. Ils sont responsables de l’initiation des potentiels d’action au niveau des cellules excitables et régissent ainsi de nombreuses fonctions physiologiques telles que les fonctions cognitives et sensorielles, les fonctions motrices et la fonction cardiaque. Au niveau du coeur, le sous-type Nav1.5 est majoritairement exprimé à la surface des cardiomyocytes. Leurs dysfonctions sont traditionnellement associées à de nombreux troubles électriques cardiaques. Des mutations de ces canaux ont récemment été reliées au développement d’un phénotype clinique complexe associant diverses arythmies et la cardiomyopathie dilatée (DCM), une atteinte morphologique. L’objectif de mon doctorat a donc été l’identification mais aussi la caractérisation d’un potentiel défaut biophysique commun à l’ensemble des mutations Nav1.5 associées au développement de ce phénotype clinique atypique. Premièrement, nous nous sommes intéressés à deux mutations des canaux Nav1.5 retrouvées chez des patients atteints de DCM, et dont les altérations biophysiques ont été décrites comme divergentes. L’étude parallèle de ces deux mutants nous a amenés à identifier une caractéristique commune : la création d’une nouvelle voie de perméation alternative au sein des canaux Nav1.5, le pore oméga. Dans un second temps, nous avons souhaité consolider l’association entre la création du pore oméga et le développement pathologique. Cette seconde étude portant sur deux autres mutants Nav1.5 a permis de confirmer l’apparition d’un pore oméga et ainsi d’accroître la suspicion du caractère délétère de ce pore oméga. Finalement, à l’aide d’une cinquième mutation des canaux Nav1.5, nous avons investigué les conséquences physiopathologiques de la création d’un pore oméga. Cette étude, a clairement démontré les conséquences néfastes d’un tel pore au niveau de l’homéostasie ionique cellulaire. Ces perturbations se répercutent par la suite sur les signaux électriques, les propriétés morphologiques mais aussi fonctionnelles des cardiomyocytes. Les études menées lors de mon doctorat ont ainsi abouti à l’identification du pore oméga comme étant une caractéristique biophysique commune aux mutations des canaux Nav1.5 associées au développement des arythmies et de la dilatation cardiaque.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Les canaux calciques dépendants du voltage CaV font partie de la famille structurale des canaux ioniques à 6 segments transmembranaires. Tout comme les canaux potassiques Kv, les canaux CaV possèdent une série de résidus chargés dans l’hélice S4 de chaque domaine ou sous-unité qui conférerait à la protéine une sensibilité aux changements de voltage. De plus les hélices S6 tapissent la paroi du pore et forment la porte d’activation de la protéine. Comment le mouvement des hélices S4 se traduit par l’ouverture de la porte d’activation des hélices S6 demeure une question encore non résolue. Suite à la publication de la structure cristalline du canal Kv1.2 en 2005, le groupe de MacKinnon a proposé que le mouvement des hélices S4 est mécaniquement couplé à la porte d’activation S6 à travers le glissement de l’hélice amphiphile S4-S5 selon un mécanisme nommé couplage électromécanique (Long et al. 2005b). Dans le but de déterminer si la région S4-S5 joue un rôle dans l’activation du canal calcique CaV2.3, nous avons étudié, par la méthode d’analyse cyclique de mutations doubles (« Double Mutant Cycle Analysis », (Horovitz 1996)), le couplage entre la boucle S4-S5 et l’hélice S6 du domaine II de ce canal. Les mesures d’énergies d’activation, ΔGact, obtenues en présence des sous-unités auxiliaires CaVα2δ et CaVβ3 ont affiché un couplage significatif pour l’activation entre les paires de résidus V593G/L699G, V593G/A700G, V593G/A702G, S595G/V703G L596G/L699G, L596G/A700G, L596G/I701G, L596G/A702G, L596G/V703G, L596G/D704G, M597G/I701G, et S602G/I701G. Aucune de ces paires de résidus n’a affiché de couplage lors de l’inactivation, suggérant que les effets observés sont spécifiques au mécanisme d’activation. Mis ensemble, ces résultats suggèrent que la boucle IIS4-S5 et l’hélice IIS6 interagissent et jouent un rôle déterminant dans l’activation de CaV2.3.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

La grossesse s’accompagne d’importantes modifications hormonales et hémodynamiques. Parmi celles-ci, le système rénine-angiotensine-aldostérone (SRAA) est activé très tôt durant la grossesse. De plus, cette augmentation du SRAA est accompagnée d’élévations du débit cardiaque et du volume plasmatique ainsi que des baisses paradoxales de la pression artérielle et de la résistance vasculaire périphérique. Ceci suggère que la grossesse induit un remaniement des réponses physiologiques normales au SRAA. Une résistance vasculaire à l’action des vasopresseurs est également observée durant la gestation. Ce phénomène serait causé par la modification de la fonction des canaux calciques et potassiques. De plus, il serait possiblement dû à la participation de la Na+/K+-ATPase, par son influence sur le potentiel membranaire des cellules des muscles lisses vasculaires (VSMC). La présence des récepteurs minéralocorticoïdes (MR) dans les VSMC laisse croire que l’aldostérone peut influencer le tonus vasculaire par des effets génomiques et non-génomiques. Compte tenu des connaissances actuelles, nous avons émis l’hypothèse que l’augmentation des taux sériques d’aldostérone durant la grossesse est responsable des changements hémodynamiques observés et que ces effets sont causés par l’activation des MR. Des rates gestantes ont été traitées avec du canrénoate de potassium (20 mg/kg•jr), un antagoniste des MR, durant la dernière semaine de gestation (sur 3). Sur des anneaux aortiques dénudés de leur endothélium, nous avons mesuré les réponses contractiles à la phényléphrine (PhE) et au KCl en présence d’un bloqueur des canaux calciques dépendants du voltage (VDCC), la nifédipine, et d’activateurs des canaux potassiques à large conductance (BKCa) et ceux dépendants de l’ATP (KATP), respectivement le NS-1619 et la cromakalim. Les réponses à la PhE et au KCl sont réduites à partir du 17e jour de gestation et le traitement au canrénoate augmente ces réponses dans tous les groupes. Les modulateurs de canaux ioniques atténuent les réponses à la PhE et au KCl. Cependant, le canrénoate modifie aussi les effets des modulateurs sur les aortes. Aucun effet ou une baisse des réponses est observable chez les rates non gestantes, tandis qu’une hausse de leur effet inhibiteur est notée chez les rates gestantes. Ces effets du canrénoate font croire que l’aldostérone participe à l’adaptation de la réactivité vasculaire durant la grossesse. Par ailleurs, le potentiel membranaire des VSMC pourrait être affecté dans la gestation. Pour vérifier cette hypothèse, nous avons évalué l’activité de la Na+/K+-ATPase, impliquée dans le contrôle du potentiel membranaire. Nos résultats démontrent que l’activité de la pompe est inhibée à partir du 19e jour de gestation. Cet effet est renversé par le canrénoate. Toutefois, comme le renversement de l’inhibition de la pompe est également présent chez les rates gestantes traitées avec du PST 2238, un antagoniste de l’ouabaïne sur la Na+/K+-ATPase, et que le canrénoate agit également comme agoniste partiel de la pompe, nous croyons que la diminution d’activité associée à la gestation est liée à une inhibition de la Na+/K+-ATPase par des stéroïdes cardiotoniques plutôt qu’à un effet des minéralocorticoïdes. L’augmention d’activité de la pompe liée au canrénoate s’accompagne d’une diminution de l’expression de la sous-unité α1, suggérant que la sous-unité α2 est responsable des variations de contractilité de l’aorte, puisque son expression n’est pas modifiée par le canrénoate. Les effets de la diminution de l’expression de la sous-unité α1, influencée par la signalisation du MR, restent à être déterminés. Néanmoins, nos résultats montrent que les modifications d’activité de la Na+/K+-ATPase influencent l’activité des canaux potassiques et que la pompe pourraient être un des éléments primordiaux dans le contrôle de la réactivité vasculaire durant la grossesse. Comme le canrénoate modifie la réactivité vasculaire, nous voulions déterminer ses impacts sur la pression artérielle. Des rates gestantes ont été traitées avec du canrénoate (20 ou 60 mg/kg•jr) et les paramètres hémodynamiques ont été évalués par radiotélémétrie. Aucune modification de la pression artérielle, du rythme cardiaque et de la pression pulsée ne sont mesurées chez les rates recevant le traitement. Toutefois, des augmentations de l’osmolalité, des taux sériques d’aldostérone et de corticostérone ainsi que de l’activité rénine plasmatique sont observées chez les animaux recevant 60 mg/kg•jr. Le canrénoate bloque donc le rétrocontrôle du SRAA. Par contre, les MR ne sont pas les principaux responsables du contrôle de la pression artérielle durant la grossesse. En conclusion, nous avons démontré que le traitement des rates au canrénoate influence la réactivité vasculaire de l’aorte durant la gestation. Cet effet est causé par la modification de l’activité de certains canaux ioniques (VDCC, BKCa et KATP). De plus, le canrénoate renverse l’inhibition de la Na+/K+-ATPase observée durant la gestation. Finalement, les actions locales de cet antagoniste des MR sur les vaisseaux sanguins ne se répercutent pas sur l’effet systémique global et aucune modification de la pression artérielle n’est observée. D’autres études seront toutefois nécessaires pour déterminer les voies de signalisation par lesquelles l’aldostérone module les réponses des canaux ioniques dans les VSMC.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

La douleur neuropathique centrale post accident vasculaire cérébral est une condition débilitante dont le traitement s’avère souvent délicat et infructueux. Le but de ce projet était de reproduire cette condition chez le rat en injectant par stéréotaxie une solution de collagènase produisant une hémorragie localisée dans le noyau ventropostérolatéral du thalamus. Des tests comportementaux évaluant la coordination motrice, la sensibilité mécanique, au chaud et au froid étaient réalisés régulièrement afin d’établir la présence de douleur neuropathique puis les effets de l’administration de kétamine, d’amitriptyline, de gabapentine, et de carbamazepine étaient évalués. L’induction d’une hémorragie intrathalamique conduit à l’apparition d’allodynie mécanique bilatérale persistante ainsi que d’allodynie au froid transitoire chez certains sujets et ce sans modification de la coordination motrice. L’administration de kétamine à forte dose renverse l’allodynie mécanique mais est associée à une altération de la motricité. L’administration de gabapentine renverse également cette allodynie mécanique sans effet notable sur la coordination motrice. Les autres médicaments n’ont pas démontré d’effet significatif. L’évaluation histopathologique des cerveaux montre une lésion bien localisée dans la zone d’intérêt. Ces résultats montrent que l’injection intrathalamique de collagénase peut être utilisée comme un modèle fiable de douleur neuropathique centrale. Si la kétamine semble capable de soulager ce type de douleur, elle est associée à des effets indésirables. En revanche, la gabapentine serait une molécule prometteuse pour le traitement de cette condition. Le rôle des récepteurs NMDA et des canaux calciques voltage dépendants, cibles respectives de la kétamine et de la gabapentine dans le maintien de cette douleur mérite d’être précisé.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

La fonction des canaux ioniques est finement régulée par des changements structuraux de sites clés contrôlant l’ouverture du pore. Ces modulations structurales découlent de l’interaction du canal avec l’environnement local, puisque certains domaines peuvent être suffisamment sensibles à des propriétés physico-chimiques spécifiques. Les mouvements engendrés dans la structure sont notamment perceptibles fonctionnellement lorsque le canal ouvre un passage à certains ions, générant ainsi un courant ionique mesurable selon le potentiel électrochimique. Une description détaillée de ces relations structure-fonction est cependant difficile à obtenir à partir de mesures sur des ensembles de canaux identiques, puisque les fluctuations et les distributions de différentes propriétés individuelles demeurent cachées dans une moyenne. Pour distinguer ces propriétés, des mesures à l’échelle de la molécule unique sont nécessaires. Le but principal de la présente thèse est d’étudier la structure et les mécanismes moléculaires de canaux ioniques par mesures de spectroscopie de fluorescence à l’échelle de la molécule unique. Les études sont particulièrement dirigées vers le développement de nouvelles méthodes ou leur amélioration. Une classe de toxine formeuse de pores a servi de premier modèle d’étude. La fluorescence à l’échelle de la molécule unique a aussi été utilisée pour l’étude d’un récepteur glutamate, d’un récepteur à la glycine et d’un canal potassique procaryote. Le premier volet porte sur l’étude de la stœchiométrie par mesures de photoblanchiment en temps résolu. Cette méthode permet de déterminer directement le nombre de monomères fluorescents dans un complexe isolé par le décompte des sauts discrets de fluorescence suivant les événements de photoblanchiment. Nous présentons ici la première description, à notre connaissance, de l’assemblage dynamique d’une protéine membranaire dans un environnement lipidique. La toxine monomérique purifiée Cry1Aa s’assemble à d’autres monomères selon la concentration et sature en conformation tétramérique. Un programme automatique est ensuite développé pour déterminer la stœchiométrie de protéines membranaires fusionnées à GFP et exprimées à la surface de cellules mammifères. Bien que ce système d’expression soit approprié pour l’étude de protéines d’origine mammifère, le bruit de fluorescence y est particulièrement important et augmente significativement le risque d’erreur dans le décompte manuel des monomères fluorescents. La méthode présentée permet une analyse rapide et automatique basée sur des critères fixes. L’algorithme chargé d’effectuer le décompte des monomères fluorescents a été optimisé à partir de simulations et ajuste ses paramètres de détection automatiquement selon la trace de fluorescence. La composition de deux canaux ioniques a été vérifiée avec succès par ce programme. Finalement, la fluorescence à l’échelle de la molécule unique est mesurée conjointement au courant ionique de canaux potassiques KcsA avec un système de fluorométrie en voltage imposé. Ces enregistrements combinés permettent de décrire la fonction de canaux ioniques simultanément à leur position et densité alors qu’ils diffusent dans une membrane lipidique dont la composition est choisie. Nous avons observé le regroupement de canaux KcsA pour différentes compositions lipidiques. Ce regroupement ne paraît pas être causé par des interactions protéine-protéine, mais plutôt par des microdomaines induits par la forme des canaux reconstitués dans la membrane. Il semble que des canaux regroupés puissent ensuite devenir couplés, se traduisant en ouvertures et fermetures simultanées où les niveaux de conductance sont un multiple de la conductance « normale » d’un canal isolé. De plus, contrairement à ce qui est actuellement suggéré, KcsA ne requiert pas de phospholipide chargé négativement pour sa fonction. Plusieurs mesures indiquent plutôt que des lipides de forme conique dans la phase cristalline liquide sont suffisants pour permettre l’ouverture de canaux KcsA isolés. Des canaux regroupés peuvent quant à eux surmonter la barrière d’énergie pour s’ouvrir de manière coopérative dans des lipides non chargés de forme cylindrique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Les canaux Ca2+ activés par le voltage (CaV) sont des protéines membranaires qui génèrent des courants Ca2+ dans les cellules excitables suite à une dépolarisation membranaire. Ces complexes oligomériques sont classifiés selon les propriétés structurelles de la sous-unité principale qui forme le pore du canal, soit la sous-unité CaVα1. La sous-unité auxiliaire CaVβ module l’expression membranaire et la dépendance au voltage du « gating » de la sous-unité CaVα1 des canaux HVA (« high-voltage-activated ») CaV1 et CaV2. La sous-unité CaVβ est formée par un domaine SH3 (« Src homology-3 ») connecté à un domaine GK (« guanylate kinase-like ») par le biais d’un domaine variable HOOK. Dans le but d’identifier les résidus dans la CaVβ3 qui sont responsables de la densité membranaire du CaV2.3, nous avons produit des mutants de la sous-unité auxiliaire le long de ses domaines fonctionnels. Cela dit, la délétion complète du domaine SH3 ainsi que la délétion du domaine HOOK n’ont pas modifié la densité membranaire de CaV2.3 ni ses propriétés d’activation. Cependant, la délétion de cinq résidus dans le domaine GK interrompt l’expression membranaire et l’expression fonctionnelle de CaV2.3. La mutation de résidus identifiés précédemment comme soutenant une affinité de liaison de l’ordre du nanomolaire dans le domaine GK de CaVβ n’a pas modifié de manière significative l’adressage membranaire de CaV2.3. Toutefois, les mutations de quatre résidus leucine dans les régions α3, α6, β10 et α9 du domaine GK ont grandement réduit l’adressage membranaire du canal CaV2.3. Nos résultats confirment que le domaine GK contient les déterminants moléculaires responsables de la fonction chaperone de CaVβ. Cela dit, l’adressage membranaire induit par CaVβ semble être déterminé par des éléments structuraux qui ne sont pas strictement dépendants d’une liaison à haute affinité de CaVβ sur CaVα1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Les canaux calciques de type L CaV1.2 sont principalement responsables de l’entrée des ions calcium pendant la phase plateau du potentiel d’action des cardiomyocytes ventriculaires. Cet influx calcique est requis pour initier la contraction du muscle cardiaque. Le canal CaV1.2 est un complexe oligomérique qui est composé de la sous-unité principale CaVα1 et des sous-unités auxiliaires CaVβ et CaVα2δ1. CaVβ joue un rôle déterminant dans l’adressage membranaire de la sous-unité CaVα1. CaVα2δ1 stabilise l’état ouvert du canal mais le mécanisme moléculaire responsable de cette modulation n’a pas été encore identifié. Nous avons récemment montré que cette modulation requiert une expression membranaire significative de CaVα2δ1 (Bourdin et al. 2015). CaVα2δ1 est une glycoprotéine qui possède 16 sites potentiels de glycosylation de type N. Nous avons donc évalué le rôle de la glycosylation de type-N dans l’adressage membranaire et la stabilité de CaVα2δ1. Nous avons d’abord confirmé que la protéine CaVα2δ1 recombinante, telle la protéine endogène, est significativement glycosylée puisque le traitement à la PNGase F se traduit par une diminution de 50 kDa de sa masse moléculaire, ce qui est compatible avec la présence de 16 sites Asn. Il s’est avéré par ailleurs que la mutation simultanée de 6/16 sites (6xNQ) est suffisante pour 1) réduire significativement la densité de surface de! CaVα2δ1 telle que mesurée par cytométrie en flux et par imagerie confocale 2) accélérer les cinétiques de dégradation telle qu’estimée après arrêt de la synthèse protéique et 3) diminuer la modulation fonctionnelle des courants générés par CaV1.2 telle qu’évaluée par la méthode du « patch-clamp ». Les effets les plus importants ont toutefois été obtenus avec les mutants N663Q, et les doubles mutants N348Q/N468Q, N348Q/N812Q, N468Q/N812Q. Ensemble, ces résultats montrent que Asn663 et à un moindre degré Asn348, Asn468 et Asn812 contribuent à la biogenèse et la stabilité de CaVα2δ1 et confirment que la glycosylation de type N de CaVα2δ1 est nécessaire à la fonction du canal calcique cardiaque de type L.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Les canaux calciques de type L CaV1.2 sont principalement responsables de l’entrée des ions calcium pendant la phase plateau du potentiel d’action des cardiomyocytes ventriculaires. Cet influx calcique est requis pour initier la contraction du muscle cardiaque. Le canal CaV1.2 est un complexe oligomérique qui est composé de la sous-unité principale CaVα1 et des sous-unités auxiliaires CaVβ et CaVα2δ1. CaVβ joue un rôle déterminant dans l’adressage membranaire de la sous-unité CaVα1. CaVα2δ1 stabilise l’état ouvert du canal mais le mécanisme moléculaire responsable de cette modulation n’a pas été encore identifié. Nous avons récemment montré que cette modulation requiert une expression membranaire significative de CaVα2δ1 (Bourdin et al. 2015). CaVα2δ1 est une glycoprotéine qui possède 16 sites potentiels de glycosylation de type N. Nous avons donc évalué le rôle de la glycosylation de type-N dans l’adressage membranaire et la stabilité de CaVα2δ1. Nous avons d’abord confirmé que la protéine CaVα2δ1 recombinante, telle la protéine endogène, est significativement glycosylée puisque le traitement à la PNGase F se traduit par une diminution de 50 kDa de sa masse moléculaire, ce qui est compatible avec la présence de 16 sites Asn. Il s’est avéré par ailleurs que la mutation simultanée de 6/16 sites (6xNQ) est suffisante pour 1) réduire significativement la densité de surface de! CaVα2δ1 telle que mesurée par cytométrie en flux et par imagerie confocale 2) accélérer les cinétiques de dégradation telle qu’estimée après arrêt de la synthèse protéique et 3) diminuer la modulation fonctionnelle des courants générés par CaV1.2 telle qu’évaluée par la méthode du « patch-clamp ». Les effets les plus importants ont toutefois été obtenus avec les mutants N663Q, et les doubles mutants N348Q/N468Q, N348Q/N812Q, N468Q/N812Q. Ensemble, ces résultats montrent que Asn663 et à un moindre degré Asn348, Asn468 et Asn812 contribuent à la biogenèse et la stabilité de CaVα2δ1 et confirment que la glycosylation de type N de CaVα2δ1 est nécessaire à la fonction du canal calcique cardiaque de type L.