999 resultados para camera trap


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Camera traps are used to estimate densities or abundances using capture-recapture and, more recently, random encounter models (REMs). We deploy REMs to describe an invasive-native species replacement process, and to demonstrate their wider application beyond abundance estimation. The Irish hare Lepus timidus hibernicus is a high priority endemic of conservation concern. It is threatened by an expanding population of non-native, European hares L. europaeus, an invasive species of global importance. Camera traps were deployed in thirteen 1 km squares, wherein the ratio of invader to native densities were corroborated by night-driven line transect distance sampling throughout the study area of 1652 km2. Spatial patterns of invasive and native densities between the invader’s core and peripheral ranges, and native allopatry, were comparable between methods. Native densities in the peripheral range were comparable to those in native allopatry using REM, or marginally depressed using Distance Sampling. Numbers of the invader were substantially higher than the native in the core range, irrespective of method, with a 5:1 invader-to-native ratio indicating species replacement. We also describe a post hoc optimization protocol for REM which will inform subsequent (re-)surveys, allowing survey effort (camera hours) to be reduced by up to 57% without compromising the width of confidence intervals associated with density estimates. This approach will form the basis of a more cost-effective means of surveillance and monitoring for both the endemic and invasive species. The European hare undoubtedly represents a significant threat to the endemic Irish hare.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Camera traps have become a widely used technique for conducting biological inventories, generating a large number of database records of great interest. The main aim of this paper is to describe a new free and open source software (FOSS), developed to facilitate the management of camera-trapped data which originated from a protected Mediterranean area (SE Spain). In the last decade, some other useful alternatives have been proposed, but ours focuses especially on a collaborative undertaking and on the importance of spatial information underpinning common camera trap studies. This FOSS application, namely, “Camera Trap Manager” (CTM), has been designed to expedite the processing of pictures on the .NET platform. CTM has a very intuitive user interface, automatic extraction of some image metadata (date, time, moon phase, location, temperature, atmospheric pressure, among others), analytical (Geographical Information Systems, statistics, charts, among others), and reporting capabilities (ESRI Shapefiles, Microsoft Excel Spreadsheets, PDF reports, among others). Using this application, we have achieved a very simple management, fast analysis, and a significant reduction of costs. While we were able to classify an average of 55 pictures per hour manually, CTM has made it possible to process over 1000 photographs per hour, consequently retrieving a greater amount of data.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The use of camera traps in wildlife management is an increasingly common practice. A phenomenon which is also becoming more common is for such camera traps to unintentionally film individuals engaged in a variety of activities, ranging from the innocent to the nefarious and including lewd or potentially embarrassing behaviour. It is therefore possible for the use of camera traps to accidentally encroach upon the privacy rights of persons who venture into the area of surveillance. In this chapter we describe the legal framework of privacy in Australia and discuss the potential risk of this sleeping tiger for users of camera traps. We also present the results of a survey of camera trap users to assess the frequency of such unintended captures and the nature of activity being filmed before discussing the practical implications of these laws for camera traps users in this country and make recommendations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Tropical forest ruminants disperse several plants; yet, their effectiveness as seed dispersers is not systematically quantified. Information on frequency and extent of frugivory by ruminants is lacking. Techniques such as tree watches or fruit traps adapted from avian frugivore studies are not suitable to study terrestrial frugivores, and conventional camera traps provide little quantitative information. We used a novel time-delay camera-trap technique to assess the effectiveness of ruminants as seed dispersers for Phyllanthus emblica at Mudumalai, southern India. After being triggered by animal movement, cameras were programmed to take pictures every 2 min for the next 6 min, yielding a sequence of four pictures. Actual frugivores were differentiated from mere visitors, who did not consume fruit, by comparing the number of fruit remaining across the time-delay photograph sequence. During a 2-year study using this technique, we found that six terrestrial mammals consumed fallen P. emblica fruit. Additionally, seven mammals and one bird species visited fruiting trees but did not consume fallen fruit. Two ruminants, the Indian chevrotain Moschiola indica and chital Axis axis, were P. emblica's most frequent frugivores and they accounted for over 95% of fruit removal, while murid rodents accounted for less than 1%. Plants like P. emblica that are dispersed mainly by large mammalian frugivores are likely to have limited ability to migrate across fragmented landscapes in response to rapidly changing climates. We hope that more quantitative information on ruminant frugivory will become available with a wider application of our time-delay camera-trap technique.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Traditionally, spoor (tracks, pug marks) have been used as a cost effective tool to assess the presence of larger mammals. Automated camera traps are now increasingly utilized to monitor wildlife, primarily as the cost has greatly declined and statistical approaches to data analysis have improved. While camera traps have become ubiquitous, we have little understanding of their effectiveness when compared to traditional approaches using spoor in the field. Here, we a) test the success of camera traps in recording a range of carnivore species against spoor; b) ask if simple measures of spoor size taken by amateur volunteers is likely to allow individual identification of leopards and c) for a trained tracker, ask if this approach may allow individual leopards to be followed with confidence in savannah habitat. We found that camera traps significantly under-recorded mammalian top and meso-carnivores, with camera traps more likely under-record the presence of smaller carnivores (civet 64%; genet 46%, Meller’s mongoose 45%) than larger (jackal sp. 30%, brown hyena 22%), while leopard was more likely to be recorded by camera trap (all recorded by camera trap only). We found that amateur trackers could be beneficial in regards to collecting presence data; however the large variance in measurements of spoor taken in the field by volunteers suggests that this approach is unlikely to add further data. Nevertheless, the use of simple spoor measurements in the field by a trained field researcher increases their ability to reliably follow a leopard trail in difficult terrain. This allows researchers to glean further data on leopard behaviour and habitat utilisation without the need for complex analysis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Activities involving fauna monitoring are usually limited by the lack of resources; therefore, the choice of a proper and efficient methodology is fundamental to maximize the cost-benefit ratio. Both direct and indirect methods can be used to survey mammals, but the latter are preferred due to the difficulty to come in sight of and/or to capture the individuals, besides being cheaper. We compared the performance of two methods to survey medium and large-sized mammal: track plot recording and camera trapping, and their costs were assessed. At Jatai Ecological Station (S21 degrees 31`15 ``- W47 degrees 34`42 ``-Brazil) we installed ten camera traps along a dirt road directly in front of ten track plots, and monitored them for 10 days. We cleaned the plots, adjusted the cameras, and noted down the recorded species daily. Records taken by both methods showed they sample the local richness in different ways (Wilcoxon, T=231; p;;0.01). The track plot method performed better on registering individuals whereas camera trapping provided records which permitted more accurate species identification. The type of infra-red sensor camera used showed a strong bias towards individual body mass (R(2)=0.70; p=0.017), and the variable expenses of this method in a 10-day survey were estimated about 2.04 times higher compared to track plot method; however, in a long run camera trapping becomes cheaper than track plot recording. Concluding, track plot recording is good enough for quick surveys under a limited budget, and camera trapping is best for precise species identification and the investigation of species details, performing better for large animals. When used together, these methods can be complementary.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The use of cameras to monitor wildlife is commonplace; however, little is known of the effectiveness of different camera technologies for the detection of mammals. We compared the detection success of three different camera systems, a passive infrared (IR) system, an active IR and a constant video camera, alongside a trapping grid of Elliott and cage traps to determine their effectiveness at detecting mammals at multiple locations in the Otways National Park, Victoria, Australia (n = 160 events; 40 ± 23 [SD] events per night). Species detected and detection rates differed between methods (χ2 = 57.95, df = 2, p < 0.0001). Only house mice (Mus musculus) were detected by camera and traditional trapping techniques. Camera systems alone detected foxes (Vulpes vulpes) and a koala (Phascolarctos cinereus), while traditional traps captured bush rats (Rattus fuscipes), agile antechinus (Antechinus agilis) and a brush-tailed possum (Trichosurus vulpecula) which were not detected by the camera systems. Assuming that the video camera detected all mammals at the camera trap, the passive IR system detected almost all mammals detected by the video and it detected significantly more species than the active IR system. The choice of method will ultimately depend on the species of interest, logistics and the study site, and may substantially influence the results of a study.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Automated camera systems have widespread application in wildlife studies and their use is increasing (Kucera & Barrett 1993; Cutler & Swann 1999; Swann et al. 2004; Parker et al. 2008). Among other applications, they have been used to produce species inventories, estimate population sizes, study behaviour and examine the impact and activity of predators (Cutler & Swann 1999; Swann et al. 2004). Modern camera systems can operate for extended durations, are relatively non-invasive, easy to operate, portable, durable and can take good-quality images by day and night (Kucera & Barrett 1993; Peterson & Thomas 1998; Allison & Destefano 2006; Parker et al. 2008). Beyond their scientific applications, the generation of high-quality images can be useful for educational and conservation purposes (Cutler & Swann 1999). The two most common types of systems currently used in ecological research are passive and active infrared (IR) systems (Cutler & Swann 1999; Parker et al. 2008). An older form of remote photography is video which captures a continuous record of activity at a focal site (Stewart et al.1997; King et al. 2001). Camera systems have certain limitations and biases (Swann et al. 2004), yet these have not been well studied. Refinement of the use of camera systems is required to fully realize their value (Towerton et al. 2008). Here, we describe a comparison of detection rates of mammals and birds by passive and active IR camera systems, using a video system to benchmark detection rates.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Context. There is an increasing reliance on the use of camera-trap technologies for surveys of medium to large terrestrial mammals. Camera trapping may, however, also have significant applications for broad-scale surveys of small mammals.
Aims. The present study aims to compare results from camera-trapping surveys to those of the more traditional live trapping techniques. Specifically, it aims to test the effectiveness of the techniques for detecting species, and the cost effectiveness of both approaches.
Methods. Surveys were conducted across 36 sites in the Grampians National Park, Victoria, Australia, between April and July 2009. At each site, independent surveys were conducted for small mammals by using a combination of Elliot and cage trapping, then camera trapping. Results for the two different approaches were compared for both their ability to generate small-mammal presence data and their cost effectiveness.
Key results. Camera-trapping surveys of 36 sites in the Grampians National Park compared favourably with those of live trapping surveys. Similar species were detected across the sites, and camera trapping was a considerably more cost effective than live trapping.
Conclusions. Camera-trapping surveys of small terrestrial mammals may provide a new and cost-effective technique for surveying terrestrial small mammals. This is particularly the case when presence data are the main requirement of the survey, with no requirement to capture and tag animals.
Implications. Given the cost-effective nature of camera trapping, there is potential to use this approach to increase the level of replication and spatial coverage of small-mammal surveys. Improving the replication and spatial coverage of studies has the potential to significantly increase the scope of research questions that can be asked, thus providing the potential to improve wildlife management.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Large animals are disproportionately likely to go extinct, and the effects of this on ecosystem processes are unclear. Megaherbivores (weighing over 1000kg) are thought to be particularly effective seed dispersers, yet only a few plant species solely or predominantly adapted for dispersal by megaherbivores have been identified. The reasons for this paradox may be elucidated by examining the ecology of so-called megafaunal fruiting species in Asia, where large-fruited species have been only sparsely researched. We conducted focal tree watches, camera trapping, fruit ageing trials, dung seed counts and germination trials to understand the ecology of Dillenia indica, a large-fruited species thought to be elephant-dispersed, in a tropical moist forest (Buxa Tiger Reserve, India). We find that the initial hardness of the fruit of D.indica ensures that its small (6mm) seeds will primarily be consumed and dispersed by elephants and perhaps other megaherbivores. Elephants removed 63.3% of camera trap-monitored fruits taken by frugivores. If the fruit of D.indica is not removed by a large animal, the seeds of D.indica become available to successively smaller frugivores as its fruits soften. Seeds from both hard and soft fruits are able to germinate, meaning these smaller frugivores may provide a mechanism for dispersal without megaherbivores.Synthesis. Dillenia indica's strategy for dispersal allows it to realize the benefits of dispersal by megaherbivores without becoming fully reliant on these less abundant species. This risk-spreading dispersal behaviour suggests D.indica will be able to persist even if its megafaunal disperser becomes extinct.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

1. The stripe-backed weasel Mustela strigidorsa is one of the rarest and least-known mustelids in the world. Its phylogenetic relationships with other Mustela species remain controversial, though several unique morphological features distinguish it from congeners. 2. It probably lives mainly in evergreen forests in hills and mountains, but has also been recorded from plains forest, dense scrub, secondary forest, grassland and farmland. Known sites range in altitude from 90 m to 2500 m. Data are insufficient to distinguish between habitat and altitudes which support populations, and those where only dispersing animals may occur. 3. It has been confirmed from many localities in north-east India, north and central Myanmar, south China, north Thailand, north and central Laos, and north and central Vietnam. Given the limited survey effort, the number of recent records shows that the species is not as rare as hitherto believed. Neither specific nor urgent conservation needs are apparent.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sao Paulo is the most developed state in Brazil and little of its native vegetation remains. In Luiz Antonio and Santa Rita do Passa Quatro municipalities, only small fragments of cerrado (Brazilian savanna) physiognomies (cerrado, cerrado sensu stricto) and of semideciduous forest have been left, surrounded by eucalyptus silviculture and sugar-cane agriculture. However, that vegetation mosaic still shelters large mammals, including several carnivore species. To detect the carnivores present in such a mosaic area (50,000 ha), and to find out how they use the landscape, we recorded them through 21 camera traps and 21 track plots, during 18 months. Species richness, diversity and relative frequency were evaluated according to the habitat. Ten species were recorded, some of them locally threatened to extinction (Puma concolor, Leopardus pardalis, Chrysocyon brachyurus). Species diversity did not significantly differ among fragments, and although most species preferred one or another habitat, the carnivore community as a whole explored all the study area regardless of the vegetation cover;eucalyptus plantations were as used by the carnivores as the native fragments. Therefore, it seems possible to maintain such animals in agricultural landscapes, where some large native fragments are left and the matrix is permeable to native fauna.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)