951 resultados para camera motion estimation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Camera motion estimation is one of the most significant steps for structure-from-motion (SFM) with a monocular camera. The normalized 8-point, the 7-point, and the 5-point algorithms are normally adopted to perform the estimation, each of which has distinct performance characteristics. Given unique needs and challenges associated to civil infrastructure SFM scenarios, selection of the proper algorithm directly impacts the structure reconstruction results. In this paper, a comparison study of the aforementioned algorithms is conducted to identify the most suitable algorithm, in terms of accuracy and reliability, for reconstructing civil infrastructure. The free variables tested are baseline, depth, and motion. A concrete girder bridge was selected as the "test-bed" to reconstruct using an off-the-shelf camera capturing imagery from all possible positions that maximally the bridge's features and geometry. The feature points in the images were extracted and matched via the SURF descriptor. Finally, camera motions are estimated based on the corresponding image points by applying the aforementioned algorithms, and the results evaluated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents different application scenarios for which the registration of sub-sequence reconstructions or multi-camera reconstructions is essential for successful camera motion estimation and 3D reconstruction from video. The registration is achieved by merging unconnected feature point tracks between the reconstructions. One application is drift removal for sequential camera motion estimation of long sequences. The state-of-the-art in drift removal is to apply a RANSAC approach to find unconnected feature point tracks. In this paper an alternative spectral algorithm for pairwise matching of unconnected feature point tracks is used. It is then shown that the algorithms can be combined and applied to novel scenarios where independent camera motion estimations must be registered into a common global coordinate system. In the first scenario multiple moving cameras, which capture the same scene simultaneously, are registered. A second new scenario occurs in situations where the tracking of feature points during sequential camera motion estimation fails completely, e.g., due to large occluding objects in the foreground, and the unconnected tracks of the independent reconstructions must be merged. In the third scenario image sequences of the same scene, which are captured under different illuminations, are registered. Several experiments with challenging real video sequences demonstrate that the presented techniques work in practice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traditional approaches to upper body pose estimation using monocular vision rely on complex body models and a large variety of geometric constraints. We argue that this is not ideal and somewhat inelegant as it results in large processing burdens, and instead attempt to incorporate these constraints through priors obtained directly from training data. A prior distribution covering the probability of a human pose occurring is used to incorporate likely human poses. This distribution is obtained offline, by fitting a Gaussian mixture model to a large dataset of recorded human body poses, tracked using a Kinect sensor. We combine this prior information with a random walk transition model to obtain an upper body model, suitable for use within a recursive Bayesian filtering framework. Our model can be viewed as a mixture of discrete Ornstein-Uhlenbeck processes, in that states behave as random walks, but drift towards a set of typically observed poses. This model is combined with measurements of the human head and hand positions, using recursive Bayesian estimation to incorporate temporal information. Measurements are obtained using face detection and a simple skin colour hand detector, trained using the detected face. The suggested model is designed with analytical tractability in mind and we show that the pose tracking can be Rao-Blackwellised using the mixture Kalman filter, allowing for computational efficiency while still incorporating bio-mechanical properties of the upper body. In addition, the use of the proposed upper body model allows reliable three-dimensional pose estimates to be obtained indirectly for a number of joints that are often difficult to detect using traditional object recognition strategies. Comparisons with Kinect sensor results and the state of the art in 2D pose estimation highlight the efficacy of the proposed approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an implementation of an aircraft pose and motion estimator using visual systems as the principal sensor for controlling an Unmanned Aerial Vehicle (UAV) or as a redundant system for an Inertial Measure Unit (IMU) and gyros sensors. First, we explore the applications of the unified theory for central catadioptric cameras for attitude and heading estimation, explaining how the skyline is projected on the catadioptric image and how it is segmented and used to calculate the UAV’s attitude. Then we use appearance images to obtain a visual compass, and we calculate the relative rotation and heading of the aerial vehicle. Additionally, we show the use of a stereo system to calculate the aircraft height and to measure the UAV’s motion. Finally, we present a visual tracking system based on Fuzzy controllers working in both a UAV and a camera pan and tilt platform. Every part is tested using the UAV COLIBRI platform to validate the different approaches, which include comparison of the estimated data with the inertial values measured onboard the helicopter platform and the validation of the tracking schemes on real flights.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El treball desenvolupat en aquesta tesi aprofundeix i aporta solucions innovadores en el camp orientat a tractar el problema de la correspondència en imatges subaquàtiques. En aquests entorns, el que realment complica les tasques de processat és la falta de contorns ben definits per culpa d'imatges esborronades; un fet aquest que es deu fonamentalment a il·luminació deficient o a la manca d'uniformitat dels sistemes d'il·luminació artificials. Els objectius aconseguits en aquesta tesi es poden remarcar en dues grans direccions. Per millorar l'algorisme d'estimació de moviment es va proposar un nou mètode que introdueix paràmetres de textura per rebutjar falses correspondències entre parells d'imatges. Un seguit d'assaigs efectuats en imatges submarines reals han estat portats a terme per seleccionar les estratègies més adients. Amb la finalitat d'aconseguir resultats en temps real, es proposa una innovadora arquitectura VLSI per la implementació d'algunes parts de l'algorisme d'estimació de moviment amb alt cost computacional.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multi-camera 3D tracking systems with overlapping cameras represent a powerful mean for scene analysis, as they potentially allow greater robustness than monocular systems and provide useful 3D information about object location and movement. However, their performance relies on accurately calibrated camera networks, which is not a realistic assumption in real surveillance environments. Here, we introduce a multi-camera system for tracking the 3D position of a varying number of objects and simultaneously refin-ing the calibration of the network of overlapping cameras. Therefore, we introduce a Bayesian framework that combines Particle Filtering for tracking with recursive Bayesian estimation methods by means of adapted transdimensional MCMC sampling. Addi-tionally, the system has been designed to work on simple motion detection masks, making it suitable for camera networks with low transmission capabilities. Tests show that our approach allows a successful performance even when starting from clearly inaccurate camera calibrations, which would ruin conventional approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Performing reliable localisation and navigation within highly unstructured underwater coral reef environments is a difficult task at the best of times. Typical research and commercial underwater vehicles use expensive acoustic positioning and sonar systems which require significant external infrastructure to operate effectively. This paper is focused on the development of a robust vision-based motion estimation technique using low-cost sensors for performing real-time autonomous and untethered environmental monitoring tasks in the Great Barrier Reef without the use of acoustic positioning. The technique is experimentally shown to provide accurate odometry and terrain profile information suitable for input into the vehicle controller to perform a range of environmental monitoring tasks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Performing reliable localisation and navigation within highly unstructured underwater coral reef environments is a difficult task at the best of times. Typical research and commercial underwater vehicles use expensive acoustic positioning and sonar systems which require significant external infrastructure to operate effectively. This paper is focused on the development of a robust vision-based motion estimation technique using low-cost sensors for performing real-time autonomous and untethered environmental monitoring tasks in the Great Barrier Reef without the use of acoustic positioning. The technique is experimentally shown to provide accurate odometry and terrain profile information suitable for input into the vehicle controller to perform a range of environmental monitoring tasks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a technique for estimating the 6DOF pose of a PTZ camera by tracking a single moving target in the image with known 3D position. This is useful in situations where it is not practical to measure the camera pose directly. Our application domain is estimating the pose of a PTZ camerso so that it can be used for automated GPS-based tracking and filming of UAV flight trials. We present results which show the technique is able to localize a PTZ after a short vision-tracked flight, and that the estimated pose is sufficiently accurate for the PTZ to then actively track a UAV based on GPS position data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interest in low bit rate video coding has increased considerably. Despite rapid progress in storage density and digital communication system performance, demand for data-transmission bandwidth and storage capacity continue to exceed the capabilities of available technologies. The growth of data-intensive digital audio, video applications and the increased use of bandwidth-limited media such as video conferencing and full motion video have not only sustained the need for efficient ways to encode analog signals, but made signal compression central to digital communication and data-storage technology. In this paper we explore techniques for compression of image sequences in a manner that optimizes the results for the human receiver. We propose a new motion estimator using two novel block match algorithms which are based on human perception. Simulations with image sequences have shown an improved bit rate while maintaining ''image quality'' when compared to conventional motion estimation techniques using the MAD block match criteria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Motion Estimation is one of the most power hungry operations in video coding. While optimal search (eg. full search)methods give best quality, non optimal methods are often used in order to reduce cost and power. Various algorithms have been used in practice that trade off quality vs. complexity. Global elimination is an algorithm based on pixel averaging to reduce complexity of motion search while keeping performance close to that of full search. We propose an adaptive version of the global elimination algorithm that extracts individual macro-block features using Hadamard transform to optimize the search. Performance achieved is close to the full search method and global elimination. Operational complexity and hence power is reduced by 30% to 45% compared to global elimination method.