907 resultados para camera link
Resumo:
A major challenge for robot localization and mapping systems is maintaining reliable operation in a changing environment. Vision-based systems in particular are susceptible to changes in illumination and weather, and the same location at another time of day may appear radically different to a system using a feature-based visual localization system. One approach for mapping changing environments is to create and maintain maps that contain multiple representations of each physical location in a topological framework or manifold. However, this requires the system to be able to correctly link two or more appearance representations to the same spatial location, even though the representations may appear quite dissimilar. This paper proposes a method of linking visual representations from the same location without requiring a visual match, thereby allowing vision-based localization systems to create multiple appearance representations of physical locations. The most likely position on the robot path is determined using particle filter methods based on dead reckoning data and recent visual loop closures. In order to avoid erroneous loop closures, the odometry-based inferences are only accepted when the inferred path's end point is confirmed as correct by the visual matching system. Algorithm performance is demonstrated using an indoor robot dataset and a large outdoor camera dataset.
Resumo:
This paper presents an evaluation of the use of videoconferencing in learning and teaching in a United Kingdom higher education institution involved in initial teacher education. Students had the opportunity to observe naturalistic teaching practices without physically being present in the classroom. The study consisted of semi-structured interviews with the co-ordinator of the link, the head of ICT services in Stranmillis University College and the teacher of the classroom being observed. Students were invited to complete an online questionnaire. The views of the students, the co-ordinator of the link, the teacher of the classroom being observed and the head of ICT services in Stranmillis University College were then triangulated to gain an overall view of the effectiveness of the videoconferencing link. Interviews suggested students benefited in terms of pedagogy. In the early stages of the project, the teacher thought it acted as a form of classroom control. Technical problems were encountered initially and camera control was modified in the light of these. The online questionnaire suggested that students viewed this experience in a positive way and were impressed with the content, technical quality, and potential benefits of the use of this example of new technologies.
Resumo:
Getting images from a Digital Camera is pretty straight forward. However this is the easy part, its getting the right image and making sure your digital file is good enough for your output. Set you camera or mobile phone to the highest settings, this will give you more options when you come to manipulate or edit the file Remember to make copies of files for editing so you can always return to your original image if you need too
Resumo:
The Optical, Spectroscopic, and Infrared Remote Imaging System OSIRIS is the scientific camera system onboard the Rosetta spacecraft (Figure 1). The advanced high performance imaging system will be pivotal for the success of the Rosetta mission. OSIRIS will detect 67P/Churyumov-Gerasimenko from a distance of more than 106 km, characterise the comet shape and volume, its rotational state and find a suitable landing spot for Philae, the Rosetta lander. OSIRIS will observe the nucleus, its activity and surroundings down to a scale of ~2 cm px−1. The observations will begin well before the onset of cometary activity and will extend over months until the comet reaches perihelion. During the rendezvous episode of the Rosetta mission, OSIRIS will provide key information about the nature of cometary nuclei and reveal the physics of cometary activity that leads to the gas and dust coma. OSIRIS comprises a high resolution Narrow Angle Camera (NAC) unit and a Wide Angle Camera (WAC) unit accompanied by three electronics boxes. The NAC is designed to obtain high resolution images of the surface of comet 7P/Churyumov-Gerasimenko through 12 discrete filters over the wavelength range 250–1000 nm at an angular resolution of 18.6 μrad px−1. The WAC is optimised to provide images of the near-nucleus environment in 14 discrete filters at an angular resolution of 101 μrad px−1. The two units use identical shutter, filter wheel, front door, and detector systems. They are operated by a common Data Processing Unit. The OSIRIS instrument has a total mass of 35 kg and is provided by institutes from six European countries
Resumo:
Manual calibration of large and dynamic networks of cameras is labour intensive and time consuming. This is a strong motivator for the development of automatic calibration methods. Automatic calibration relies on the ability to find correspondences between multiple views of the same scene. If the cameras are sparsely placed, this can be a very difficult task. This PhD project focuses on the further development of uncalibrated wide baseline matching techniques.
Resumo:
Policy has been a much neglected area for research in science education. In their neglect of policy studies, researchers have maintained an ongoing naivete about the politics of science education. In doing so, they often overestimate the implications of their research findings about practice and ignore the interplay between the stakeholders beyond and in-school who determine the nature of the curriculum for science education and its enacted character. Policies for education (and science education in particular) always involve authority and values, both of which raise sets of fascinating questions for research. The location of authority for science education differs across educational systems in ways that affect the role teachers are expected to play. Policies very often value some groups in society over others, as the long history of attempts to provide science for all students testifies. As research on teaching/learning science identifies pedagogies that have widespread effectiveness, the policy issue of mandating these becomes important. Illustrations of successful policy to practice suggest that establishing conditions that will facilitate the intended implementation is critically important. The responsibility of researchers for critiquing and establishing policy for improving the practice of science education is discussed, together with the role research associations could play if they are to claim their place as key stakeholders in science education.