8 resultados para cADPR
Resumo:
Cells possess multiple intracellular Ca2+-releasing systems. Sea urchin egg homogenates are a well-established model to study intracellular Ca2+ release. In the present study the mechanism of interaction between three intracellular Ca2+ pools, namely the nicotinic acid adenine dinucleotide phosphate (NAADP), the cyclic ADP-ribose (cADPR) and the inositol 1',4',5'-trisphosphate (IP3)-regulated Ca2+ stores, is explored. The data indicate that the NAADP Ca2+ pool could be used to sensitize the cADPR system. In contrast, the IP3 pool was not affected by the Ca2+ released by NAADP. The mechanism of potentiation of the cADPR-induced Ca2+ release, promoted by Ca2+ released from the NAADP pool, is mediated by the mechanism of Ca2+-induced Ca2+ release. These data raise the possibility that the NAADP Ca2+ store may have a role as a regulator of the cellular sensitivity to cADPR.
Resumo:
Store-operated Ca2+ entry plays an important role in Ca2+ homeostasis in cells but the mechanisms of control of these channels are not completely understood. We describe an investigation of the role of the CD38-cyclic-ADP-ribose (cADPR)-ryanodine-channel (RyR) signaling pathway in store-operated Ca2+ entry in human smooth muscle. We observed that human myometrial cells have a functional store-operated Ca2+ entry mechanism. Furthermore, we observed the presence of transient receptor potential 1, 3, 4, 5, and 6 ion channels in human myometrial cells. Store-operated Ca2+ transient was inhibited by at least 50-70% by several inhibitors of the RyR, including ryanodine (10 µM), dantrolene (10 µM), and ruthenium red (10 µM). Furthermore, the cell permeable inhibitor of the cADPR-system, 8-Br-cADPR (100 µM), is a potent inhibitor of the store-operated entry, decreasing the store operated entry by 80%. Pre-incubation of cells with 100 µM cADPR and the hydrolysis-resistant cADPR analog 3-deaza-cADPR (50 µM), but not with ADP-ribose (ADPR) leads to a 1.6-fold increase in the store-operated Ca2+ transient. In addition, we observed that nicotinamide (1-10 mM), an inhibitor of cADPR synthesis, also leads to inhibition of the store-operated Ca2+ transient by 50-80%. Finally, we observed that the transient receptor potential channels, RyR, and CD38 can be co-immunoprecipitated, indicating that they interact in vivo. Our observations clearly implicate the CD38-cADPR-ryanodine signaling pathway in the regulation of store-operated Ca2+ entry in human smooth muscle cells.
Resumo:
Diversos estudos vêm sendo realizados com a finalidade de aumentar o conhecimento sobre a ocorrência e a atividade do óxido nítrico (ON) nas plantas. Nesse sentido, a presente revisão objetivou abordar alguns aspectos referentes ao on nas plantas, tais como propriedades químicas, vias de síntese, efeitos fisiológicos, ação antioxidante, transdução do sinal, interação com hormônios vegetais e expressão gênica. Nos últimos anos, muitos avanços têm sido obtidos em relação à síntese de on e seus efeitos fisiológicos nas plantas. Porém, os mecanismos moleculares que fundamentam seus efeitos permanecem pouco compreendidos. É sinalizada uma investigação em detalhes sobre as estreitas interações entre ON, Ca2+, ADP-ribose cíclica (cADPR) e proteínas quinases. Além disso, ainda não foi possível identificar uma enzima vegetal que apresente atividade semelhante à da óxido nítrico sintase (NOS). A elucidação de tais aspectos representa um desafio para futuros trabalhos.
Resumo:
Ca2+ released from presynaptic and postsynaptic intracellular stores plays important roles in activity-dependent synaptic plasticity, including long-term depression (LTD) of synaptic strength. At Schaffer collateral–CA1 synapses in the hippocampus, presynaptic ryanodine receptor-gated stores appear to mobilize some of the Ca2+ necessary to induce LTD. Cyclic ADP-ribose (cADPR) has recently been proposed as an endogenous activator of ryanodine receptors in sea urchin eggs and several mammalian cell types. Here, we provide evidence that cADPR-mediated signaling pathways play a key role in inducing LTD. We show that biochemical production of cGMP increases cADPR concentration in hippocampal slices in vitro, and that blockade of cGMP-dependent protein kinase, cADPR receptors, or ryanodine-sensitive Ca2+ stores each prevent the induction of LTD at Schaffer collateral–CA1 synapses. A lack of effect of postsynaptic infusion of either cADPR antagonist indicates a probable presynaptic site of action.
Resumo:
Higher plants share with animals a responsiveness to the Ca2+ mobilizing agents inositol 1,4,5-trisphosphate (InsP3) and cyclic ADP-ribose (cADPR). In this study, by using a vesicular 45Ca2+ flux assay, we demonstrate that microsomal vesicles from red beet and cauliflower also respond to nicotinic acid adenine dinucleotide phosphate (NAADP), a Ca2+-releasing molecule recently described in marine invertebrates. NAADP potently mobilizes Ca2+ with a K1/2 = 96 nM from microsomes of nonvacuolar origin in red beet. Analysis of sucrose gradient-separated cauliflower microsomes revealed that the NAADP-sensitive Ca2+ pool was derived from the endoplasmic reticulum. This exclusively nonvacuolar location of the NAADP-sensitive Ca2+ pathway distinguishes it from the InsP3- and cADPR-gated pathways. Desensitization experiments revealed that homogenates derived from cauliflower tissue contained low levels of NAADP (125 pmol/mg) and were competent in NAADP synthesis when provided with the substrates NADP and nicotinic acid. NAADP-induced Ca2+ release is insensitive to heparin and 8-NH2-cADPR, specific inhibitors of the InsP3- and cADPR-controlled mechanisms, respectively. However, NAADP-induced Ca2+ release could be blocked by pretreatment with a subthreshold dose of NAADP, as previously observed in sea urchin eggs. Furthermore, the NAADP-gated Ca2+ release pathway is independent of cytosolic free Ca2+ and therefore incapable of operating Ca2+-induced Ca2+ release. In contrast to the sea urchin system, the NAADP-gated Ca2+ release pathway in plants is not blocked by L-type channel antagonists. The existence of multiple Ca2+ mobilization pathways and Ca2+ release sites might contribute to the generation of stimulus-specific Ca2+ signals in plant cells.
Resumo:
Abscisic acid (ABA) is a plant hormone involved in the response of plants to reduced water availability. Reduction of guard cell turgor by ABA diminishes the aperture of the stomatal pore and thereby contributes to the ability of the plant to conserve water during periods of drought. Previous work has demonstrated that cytosolic Ca2+ is involved in the signal transduction pathway that mediates the reduction in guard cell turgor elicited by ABA. Here we report that ABA uses a Ca2+-mobilization pathway that involves cyclic adenosine 5′-diphosphoribose (cADPR). Microinjection of cADPR into guard cells caused reductions in turgor that were preceded by increases in the concentration of free Ca2+ in the cytosol. Patch clamp measurements of isolated guard cell vacuoles revealed the presence of a cADPR-elicited Ca2+-selective current that was inhibited at cytosolic Ca2+ ≥ 600 nM. Furthermore, microinjection of the cADPR antagonist 8-NH2-cADPR caused a reduction in the rate of turgor loss in response to ABA in 54% of cells tested, and nicotinamide, an antagonist of cADPR production, elicited a dose-dependent block of ABA-induced stomatal closure. Our data provide definitive evidence for a physiological role for cADPR and illustrate one mechanism of stimulus-specific Ca2+ mobilization in higher plants. Taken together with other recent data [Wu, Y., Kuzma, J., Marechal, E., Graeff, R., Lee, H. C., Foster, R. & Chua, N.-H. (1997) Science 278, 2126–2130], these results establish cADPR as a key player in ABA signal transduction pathways in plants.
Resumo:
Salicylic acid (SA) plays a critical signaling role in the activation of plant defense responses after pathogen attack. We have identified several potential components of the SA signaling pathway, including (i) the H2O2-scavenging enzymes catalase and ascorbate peroxidase, (ii) a high affinity SA-binding protein (SABP2), (iii) a SA-inducible protein kinase (SIPK), (iv) NPR1, an ankyrin repeat-containing protein that exhibits limited homology to IκBα and is required for SA signaling, and (v) members of the TGA/OBF family of bZIP transcription factors. These bZIP factors physically interact with NPR1 and bind the SA-responsive element in promoters of several defense genes, such as the pathogenesis-related 1 gene (PR-1). Recent studies have demonstrated that nitric oxide (NO) is another signal that activates defense responses after pathogen attack. NO has been shown to play a critical role in the activation of innate immune and inflammatory responses in animals. Increases in NO synthase (NOS)-like activity occurred in resistant but not susceptible tobacco after infection with tobacco mosaic virus. Here we demonstrate that this increase in activity participates in PR-1 gene induction. Two signaling molecules, cGMP and cyclic ADP ribose (cADPR), which function downstream of NO in animals, also appear to mediate plant defense gene activation (e.g., PR-1). Additionally, NO may activate PR-1 expression via an NO-dependent, cADPR-independent pathway. Several targets of NO in animals, including guanylate cyclase, aconitase, and mitogen-activated protein kinases (e.g., SIPK), are also modulated by NO in plants. Thus, at least portions of NO signaling pathways appear to be shared between plants and animals.
Resumo:
The ryanodine receptor-like Ca2+ channel (RyRLC) is responsible for Ca2+ wave propagation and Ca2+ oscillations in certain nonmuscle cells by a Ca(2+)-induced Ca2+ release (CICR) mechanism. Cyclic ADP-ribose (cADPR), an enzymatic product derived from NAD+, is the only known endogenous metabolite that acts as an agonist on the RyRLC. However, the mode of action of cADPR is not clear. We have identified calmodulin as a functional mediator of cADPR-triggered CICR through the RyRLC in sea urchin eggs. cADPR-induced Ca2+ release consisted of two phases, an initial rapid release phase and a subsequent slower release. The second phase was selectively potentiated by calmodulin which, in turn, was activated by Ca2+ released during the initial phase. Caffeine enhanced the action of calmodulin. Calmodulin did not play a role in inositol 1,4,5-trisphosphate-induced Ca2+ release. These findings offer insights into the multiple pathways that regulate intracellular Ca2+ signaling.