994 resultados para bushfire risk
Resumo:
10 page document containing expert assessment of shortcomings of Western Australian State Planning Policy SPP3.7- Planning for Bushfire Risk Management. Document produced on behalf of QUT and submitted to and published by the WAPC as part of their public consultation process for their draft policy.
Resumo:
My perspective on the problems associated with building in bushfire prone landscapes comes from 12 years of study of the biophysical and cultural landscapes in the Great Southern Region of WA which resulted in the design and construction of the ‘Hhouse’ at Bremer Bay. The house was developed using a ‘ground up’ approach whereby I conducted a topographical survey and worked with a local botanist and a bushfire risk consultant to ascertain the level of threat that fire presented to this particular site. My intention from the outset however, was not to design a bushfire resistant house per se, but to develop a design which would place the owners in close proximity to the highly biodiverse heath vegetation of the site. I was also seeking a means—through architectural design—of linking the patterns of usage of the house with other site specific conditions related to the prevailing winds, solar orientation and seasonal change.
Resumo:
30 minute invited presentation on design-led bushfire risk mitigatition stategies for reconciling the two (otherwise) opposing managment goals of bushfire safety and biodiversity conservation. Targeted at the S E Queensland national audience participants.
Resumo:
The author's approach to the problems associated with building in bushfire prone landscapes comes from 12 years of study of the biophysical and cultural landscapes in the Great Southern Region of Western Australia - research which resulted in the design and construction of the H-house at Bremer Bay. The house was developed using a 'ground up' approach whereby Dr Weir conducted topographical surveys and worked with a local botanist and a bushfire risk consultant to ascertain the level of threat that fire presented to this particular site. The intention from the outset however, was not to design a bushfire resistant house per se, but to develop a design which would place the owners in close proximity to the highly biodiverse heath vegetation of their site. The research aim was to find ways - through architectural design-to link the patterns of usage of the house with other site specific conditions related to the prevailing winds, solar orientation and seasonal change. The H-house has a number of features which increase the level of bushfire safety. These include: Fire rated roller shutters (tested by the CSIRO for ember attack and radiant heat), Fire resistant double glazing (on windows not protected by the shutters), Fibre-cement sheet cladding of the underside of the elevated timber floor structure, Manually operated high pressure sprinkler system on exposed timber decks, A fire refuge (an enlarged laundry, shower area) within the house with a dedicated cabinet for fire fighting equipment) and A low pressure solar powered domestic water supply system.
Resumo:
House loss during unplanned bushfires is a complex phenomenon where design, configuration, material and siting, can significantly influence the loss. In collaboration with the Bushfire Cooperative Research Centre the CSIRO has developed a tool to assess the vulnerability of a specific house at the urban interface. The tool is based on a spatial profiling of urban assets including their design, material, surrounding objects and their relationship amongst one another. The analysis incorporates both probabilistic and deterministic parameters, and is based on the impact of radiant heat, flame and embers on the surrounding elements and the structure itself. It provides a breakdown of the attributes and design parameters that contribute to the vulnerability level. This paper describes the tool which allows the user to explore the vulnerability of a house to varying levels of bushfire attacks. The tool is aimed at government agencies interested in building design, town planning and community education for bushfire risk mitigation.
Resumo:
Emergency management and climate change adaptation will increasingly challenge all levels of government because of three main factors. First, Australia is extremely vulnerable to the impacts of climate change, particularly through the increasing frequency, duration and/or intensity of disasters such as floods and bushfires. Second, the system of government that divides powers by function and level can often act as a barrier to a well-integrated response. Third, policymaking processes struggle to cope with such complex inter-jurisdictional issues. This paper discusses these factors and explores the nature of the challenge for Australian governments. Investigations into the 2009 Victorian bushfires, the 2011 Perth Hills bushfires, and the 2011 Brisbane floods offer an indication of the challenges ahead and it is argued that there is a need to: improve community engagement and communication; refocus attention on resilience; improve interagency communication and collaboration; and, develop institutional arrangements that support continual improvement and policy learning. These findings offer an opportunity for improving responses as well as a starting point for integrating disaster risk management and climate change adaptation policies. The paper is based on the preliminary findings of an NCCARF funded research project: The Right Tool for the Job: Achieving climate change adaptation outcomes through improved disaster management policies, planning and risk management strategies involving Griffith University and RMIT. It should be noted from the outset that the purpose of this research project is not to criticise the actions of emergency service workers and volunteers who do an incredible job under extreme circumstances, often risking their own lives in the process. The aim is simply to offer emergency management agencies the opportunity to step back and rethink their overall approach to the challenge they face in the light of the impacts of climate change.
Resumo:
Bushfires are regular occurrences in the Australian landscape which can, under adverse weather conditions, give rise to losses of life, property, infrastructure, environmental and cultural values. Where property loss is involved, historical surveys of house losses have focussed on ember, radiant heat and flame contact as key bushfire attack mechanisms. Although often noted, little work has been done to quantify the impact of fire generated or fire enhanced wind and pyro-convective events on house loss and to improve construction practice within Australia. It is well known that strong winds are always associated with bushfire events. It is less well known, although increasingly shown through anecdotal evidence, that bushfires are not a passive companion of wind, but indeed they interact with winds and can together cause significant damages to exposed buildings and ecological structures. Previous studies have revealed the effects of wind, fire and structure interactions with the result of increased pressure coefficient distributions on the windward side of a building downstream of a fire front. This paper presents a further analysis of the result in relations to the relevant standards and fire weather conditions. A review of wind code and bushfire code was conducted. Based on the result of the current study, the authors believe it is necessary to consider wind as an attack mechanism in bushfire events. The results of the study will also have implications on bushfire emergency management, design of emergency shelters, perception of danger, emergency evacuation and on risk assessment.
Resumo:
Bushfire responsive design and management strategy at the bioregion scale. 248 Page document containing text, original designs, photographs, masterplans and critique - created as an alternative community-based strategy for risk mitigation and management reponse to bushfire in the Point Henry and Bremer Bay region of Western Australia. Document drafted as an alternative to a local government commissioned plan which had many shortcomings. It was presented as a 'powerpoint' presentaion at a public meeting in Bremer Bay on 7th April 2014 and disseminated to local community members and councillors to encourage public debate and feedback to the Shire of Jerramungup, WA.
Resumo:
Background There is evidence that certain mutations in the double-strand break repair pathway ataxia-telangiectasia mutated gene act in a dominant-negative manner to increase the risk of breast cancer. There are also some reports to suggest that the amino acid substitution variants T2119C Ser707Pro and C3161G Pro1054Arg may be associated with breast cancer risk. We investigate the breast cancer risk associated with these two nonconservative amino acid substitution variants using a large Australian population-based case–control study. Methods The polymorphisms were genotyped in more than 1300 cases and 600 controls using 5' exonuclease assays. Case–control analyses and genotype distributions were compared by logistic regression. Results The 2119C variant was rare, occurring at frequencies of 1.4 and 1.3% in cases and controls, respectively (P = 0.8). There was no difference in genotype distribution between cases and controls (P = 0.8), and the TC genotype was not associated with increased risk of breast cancer (adjusted odds ratio = 1.08, 95% confidence interval = 0.59–1.97, P = 0.8). Similarly, the 3161G variant was no more common in cases than in controls (2.9% versus 2.2%, P = 0.2), there was no difference in genotype distribution between cases and controls (P = 0.1), and the CG genotype was not associated with an increased risk of breast cancer (adjusted odds ratio = 1.30, 95% confidence interval = 0.85–1.98, P = 0.2). This lack of evidence for an association persisted within groups defined by the family history of breast cancer or by age. Conclusion The 2119C and 3161G amino acid substitution variants are not associated with moderate or high risks of breast cancer in Australian women.