947 resultados para burning rate


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work presents experimental information relevant to the combustion of biomass in a bubbling fluidized bed. The biomass distribution in a fluidized bed was studied through tests performed in a cold bed, while the volatiles released in the biomass pyrolysis, the burning rate of the resulting charcoal, and the combustion control regime, were studied through tests performed in a high temperature bed.Visual examination of photographs taken from a transparent walls bed, with a rectangular cross-section, showed that the large fuel particles, typical of biomass processing, were distributed in the bubbles, in the splash zone, and in the emulsion phase. The occurrence of biomass in the emulsion phase was favored by burning biomass particles of greater density and smaller size-expetimentally determined in each case. Decreasing the fuel particle size improved the biomass distribution inside the bed. The same was accomplished by increasing the superficial gas velocity as high as possible, compatibly with the acceptable elutriation.Burning tests showed that the biomass fuels have the advantage of reaching the diffusional regime at temperatures that can be lower than 1000 K, which ensures that the biomass fuels burn in a stable regime. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La regolazione dei sistemi di propulsione a razzo a propellente solido (Solid Rocket Motors) ha da sempre rappresentato una delle principali problematiche legate a questa tipologia di motori. L’assenza di un qualsiasi genere di controllo diretto del processo di combustione del grano solido, fa si che la previsione della balistica interna rappresenti da sempre il principale strumento utilizzato sia per definire in fase di progetto la configurazione ottimale del motore, sia per analizzare le eventuali anomalie riscontrate in ambito sperimentale. Variazioni locali nella struttura del propellente, difettosità interne o eterogeneità nelle condizioni di camera posso dare origine ad alterazioni del rateo locale di combustione del propellente e conseguentemente a profili di pressione e di spinta sperimentali differenti da quelli previsti per via teorica. Molti dei codici attualmente in uso offrono un approccio piuttosto semplificato al problema, facendo per lo più ricorso a fattori correttivi (fattori HUMP) semi-empirici, senza tuttavia andare a ricostruire in maniera più realistica le eterogeneità di prestazione del propellente. Questo lavoro di tesi vuole dunque proporre un nuovo approccio alla previsione numerica delle prestazioni dei sistemi a propellente solido, attraverso la realizzazione di un nuovo codice di simulazione, denominato ROBOOST (ROcket BOOst Simulation Tool). Richiamando concetti e techiche proprie della Computer Grafica, questo nuovo codice è in grado di ricostruire in processo di regressione superficiale del grano in maniera puntuale, attraverso l’utilizzo di una mesh triangolare mobile. Variazioni locali del rateo di combustione posso quindi essere facilmente riprodotte ed il calcolo della balistica interna avviene mediante l’accoppiamento di un modello 0D non-stazionario e di uno 1D quasi-stazionario. L’attività è stata svolta in collaborazione con l’azienda Avio Space Division e il nuovo codice è stato implementato con successo sul motore Zefiro 9.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The main purposes of this essay were to investigate in detail the burning rate anomaly phenomenon, also known as "Hump Effect", in solid rocket motors casted in mandrel and the mechanisms at the base of it, as well as the developing of a numeric code, in Matlab environment, in order to obtain a forecasting tool to generate concentration and orientation maps of the particles within the grain. The importance of these analysis is due to the fact that the forecasts of ballistics curves in new motors have to be improved in order to reduce the amount of experimental tests needed for the characterization of their ballistic behavior. This graduate work is divided into two parts. The first one is about bidimensional and tridimensional simulations on z9 motor casting process. The simulations have been carried out respectively with Fluent and Flow 3D. The second one is about the analysis of fluid dynamic data and the developing of numeric codes which give information about the concentration and orientation of particles within the grain based on fluid strain rate information which are extrapolated from CFD software.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O presente trabalho consiste na caracterização física e química da pólvora. Esta caracterização foi realizada para alguns tipos de pólvora, com o objetivo de se poder empregar este tipo de material noutros âmbitos, que não seja só nas Forças Armadas, nomeadamente, no armamento. A caracterização física abrangeu, essencialmente, a caracterização morfológica das amostras tal-qual, nomeadamente, as pólvoras multi-perfurada, tubular, tubular (rocket), cilíndrica, esférica, lamelar, em fita e a pólvora negra. A técnica utilizada foi a observação através de uma lupa estereoscópica. Após a combustão, foi utilizado o microscópio eletrónico de varrimento. A caracterização química foi realizada no âmbito da análise química elementar, e também no âmbito da combustão, às condições atmosféricas. Na análise química elementar, foram estudadas a pólvora multiperfurada, tubular, tubular rocket e em fita, por intermédio da espectrometria de fluorescência de raios-X - dispersão de energia e por espectrometria de absorção atómica de chama. No âmbito da combustão, foram estudas a taxa de queima e a velocidade de propagação de chama, nas amostras de pólvora multi-perfurada e a pólvora de fita, através de técnicas de medição de massa e de visualização de chama. Na discussão de resultados constatou-se que a maioria dos tipos de pólvora estudados pertencem ao grupo dos propelentes de base dupla. Apesar da variabilidade entre amostras, verificou-se que o principal elemento comum é o chumbo. Quanto à taxa de queima, esta apresenta uma evolução aproximadamente linear em todas as amostras. Foi, ainda, apresentada uma velocidade de propagação de chama característica para os dois tipos de pólvora estudados, tendo sido estabelecida para a pólvora multi-perfurada uma velocidade SR = 1,1 mm/s, para em fita, SR = 6,0 mm/s.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, the existing understanding of flame spread dynamics is enhanced through an extensive study of the heat transfer from flames spreading vertically upwards across 5 cm wide, 20 cm tall samples of extruded Poly (Methyl Methacrylate) (PMMA). These experiments have provided highly spatially resolved measurements of flame to surface heat flux and material burning rate at the critical length scale of interest, with a level of accuracy and detail unmatched by previous empirical or computational studies. Using these measurements, a wall flame model was developed that describes a flame’s heat feedback profile (both in the continuous flame region and the thermal plume above) solely as a function of material burning rate. Additional experiments were conducted to measure flame heat flux and sample mass loss rate as flames spread vertically upwards over the surface of seven other commonly used polymers, two of which are glass reinforced composite materials. Using these measurements, our wall flame model has been generalized such that it can predict heat feedback from flames supported by a wide range of materials. For the seven materials tested here – which present a varied range of burning behaviors including dripping, polymer melt flow, sample burnout, and heavy soot formation – model-predicted flame heat flux has been shown to match experimental measurements (taken across the full length of the flame) with an average accuracy of 3.9 kW m-2 (approximately 10 – 15 % of peak measured flame heat flux). This flame model has since been coupled with a powerful solid phase pyrolysis solver, ThermaKin2D, which computes the transient rate of gaseous fuel production of constituents of a pyrolyzing solid in response to an external heat flux, based on fundamental physical and chemical properties. Together, this unified model captures the two fundamental controlling mechanisms of upward flame spread – gas phase flame heat transfer and solid phase material degradation. This has enabled simulations of flame spread dynamics with a reasonable computational cost and accuracy beyond that of current models. This unified model of material degradation provides the framework to quantitatively study material burning behavior in response to a wide range of common fire scenarios.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxy-coal combustion is a viable technology, for new and existing coal-fired power plants, as it facilitates carbon capture and, thereby, can mitigate climate change. Pulverized coals of various ranks, biomass, and their blends were burned to assess the evolution of combustion effluent gases, such as NO(x), SO(2), and CO, under a variety of background gas compositions. The fuels were burned in an electrically heated laboratory drop-tube furnace in O(2)/N(2) and O(2)/CO(2) environments with oxygen mole fractions of 20%, 40%, 60%, 80%, and 100%, at a furnace temperature of 1400 K. The fuel mass flow rate was kept constant in most cases, and combustion was fuel-lean. Results showed that in the case of four coals studied, NO(x) emissions in O(2)/CO(2) environments were lower than those in O(2)/N(2) environments by amounts that ranged from 19 to 43% at the same oxygen concentration. In the case of bagasse and coal/bagasse blends, the corresponding NO(x) reductions ranged from 22 to 39%. NO(x) emissions were found to increase with increasing oxygen mole fraction until similar to 50% O(2) was reached; thereafter, they monotonically decreased with increasing oxygen concentration. NO(x) emissions from the various fuels burned did not clearly reflect their nitrogen content (0.2-1.4%), except when large content differences were present. SO(2) emissions from all fuels remained largely unaffected by the replacement of the N(2) diluent gas with CO(2), whereas they typically increased with increasing sulfur content of the fuels (0.07-1.4%) and decreased with increasing calcium content of the fuels (0.28-2.7%). Under the conditions of this work, 20-50% of the fuel-nitrogen was converted to NO(x). The amount of fuel-sulfur converted to SO(2) varied widely, depending on the fuel and, in the case of the bituminous coal, also depending on the O(2) mole fraction. Blending the sub-bituminous coal with bagasse reduced its SO(2) yields, whereas blending the bituminous coal with bagasse reduced both its SO(2) and NO(x) yields. CO emissions were generally very low in all cases. The emission trends were interpreted on the basis of separate combustion observations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: Biofuel from sugarcane is widely produced in developing countries and is a clean and renewable alternative source of energy. However, sugarcane harvesting is mostly performed after biomass burning. The aim of this study was to evaluate the effects of harvesting after biomass burning on nasal mucociliary clearance and the nasal mucus properties of farm workers. Methods: Twenty seven sugarcane workers (21-45 years old) were evaluated at the end of two successive time-periods: first at the end of a 6-month harvesting period (harvesting), and then at the end of a 3-month period without harvesting (non-harvesting). Nasal mucociliary clearance was evaluated by the saccharine transit test, and mucus properties were analyzed using in vitro mucus contact angle and mucus transportability by sneeze. Arterial blood pressure, heart rate, respiratory rate, pulse oximetry, body temperature, associated illness, and exhaled carbon monoxide were registered. Results: Data are presented as mean values (95% confidence interval). The multivariate model analysis adjusted for age, body-mass index, smoking status and years of working with this agricultural practice showed that harvesting yielded prolonged saccharine transit test in 7.83 min (1.88-13.78), increased mucus contact angle in 8.68 degrees (3.18-14.17) and decreased transportability by sneeze in 32.12 mm (-44.83 to -19.42) compared with the non-harvesting period. No significant differences were detected in any of the clinical parameter at either time-period. Conclusion: Sugarcane harvesting after biomass burning negatively affects the first barrier of the respiratory system in farm workers by impairing nasal mucociliary clearance and inducing abnormal mucus properties. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A total of 250 dentists (53.6% men and 46.4% women), with a mean age of 35.1 ± 9.8 years, were submitted to serological tests for the diagnosis of hepatitis B (HB) - HBsAg, anti-HBs, anti-HBc, HBeAg, and anti-HBe - using a radioimmunoassay. One or more of these markers were detected in 78 individuals (31.2%) who were excluded from the group to be vaccinated. Of the 172 HB-susceptible individuals, 135 (78.5%) responded to the call and were intradermally injected with three 2 µg doses of the Belgian HB recombinant vaccine, applied at an interval of one month between the 1st and 2nd dose and of five months between the 2nd and 3rd dose. A new determination of HB markers carried out 50 days after the 3rd dose showed that 110 (81.5%) individuals had become anti-HBs positive (65.5% good responders and 34.5% poor responders). Mean serum anti-HBs titer of these 110 dentists was 42.4 U S/N, similar in both sexes. The adverse effects analyzed in 106 dentists were: (a) local: pain (12.3%), burning sensation (14.1%), pruritus (25.5%), erythema (28.3%), local heat (18.9%), and a hypochromic spot (32.1%); (b) systemic (4.7%): discomfort in two patients, and fever, anorexia, and asthenia in one patient each. Intradermal administration of a fourth 2 µg vaccine dose to 39 dentists (poor or non-responders) increased the total number of anti-HBs-positive individuals from 110 (81.5%) to 114 (84.4%), with the number of good responders increasing from 72 (65.5%) to 85 (74.6%). We conclude that the Belgian recombinant vaccine applied in the scheme used here induces a high rate of seroconversion and causes only mild and transitory adverse effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of combustion driven acoustic oscillations in carbon monoxide and nitrogen oxides emission rates of a combustor operated with liquefied petroleum gas (LPG) were investigated. Because the fuel does not contain nitrogen, tests were also conducted with ammonia injected in the fuel, in order to study the formation of fuel NOx. The main conclusions were: (a) the pulsating combustion process is more efficient than the non-pulsating one and (b) the pulsating combustion process generates higher rates of NOx, with and without ammonia injection, as shown by CO and NO concentrations as function of the O-2 concentration. An increase in the LPG flow rate, keeping constant the air to fuel ratio, increased the acoustic pressure amplitude and the frequency of oscillation. The injection of ammonia had no influence on either pressure amplitude or frequency. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To identify spatial patterns in rates of admission for pneumonia among children and relate them to the number of fires reported in the state of Mato Grosso, Brazil. Methods: We conducted an ecological and exploratory study of data from the state of Mato Grosso for 2008 and 2009 on hospital admissions of children aged 0 to 4 years due to pneumonia and on fires in the same period. Admission rates were calculated and choropleth maps were plotted for rates and for fire outbreaks, Moran's I was calculated and the kernel estimator used to identify "hotspots." Data were analyzed using TerraView 3.3.1. Results: Fifteen thousand six hundred eighty-nine children were hospitalized (range zero to 2,315), and there were 161,785 fires (range 7 to 6,454). The average rate of admissions per 1,000 inhabitants was 2.89 (standard deviation [SD] = 5.18) and the number of fires per 1,000 inhabitants was 152.81 (SD = 199.91). Moran's I for the overall number of admissions was I = 0.02 (p = 0.26), the index for rate of admission was I = 0.02 (p = 0.21) and the index for the number of fires was I = 0.31 (p < 0.01). It proved possible to identify four municipalities with elevated rates of admissions for pneumonia. It was also possible to identify two regions with high admission densities. A clustering of fires was evident along what is known as the "arc of deforestation." Conclusions: This study identified municipalities in the state of Mato Grosso that require interventions to reduce rates of admission due to pneumonia and the number fires.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation focuses on characterizing the emissions of volatile organic compounds (VOCs) from grasses and young trees, and the burning of biomass mainly from Africa and Indonesia. The measurements were performed with a proton-transfer-reaction mass spectrometer (PTR-MS). The biogenic emissions of tropical savanna vegetation were studied in Calabozo (Venezuela). Two field campaigns were carried out, the first during the wet season (1999) and the second during the dry season (2000). Three grass species were studied: T. plumosus, H. rufa and A. canescens, and the tree species B. crassifolia, C. americana and C. vitifolium. The emission rates were determined with a dynamic plant enclosure system. In general, the emissions increased exponentially with increasing temperature and solar radiation. Therefore, the emission rates showed high variability. Consequently, the data were normalized to a standard temperature of 30°C, and standard emission rates thus determined allowed for interspecific and seasonal comparisons. The range of average daytime (10:00-16:00) emission rates of total VOCs measured from green (mature and young) grasses was between 510-960 ngC/g/h. Methanol was the primary emission (140-360 ngC/g/h), followed by acetaldehyde, butene and butanol and acetone with emission rates between 70-200 ngC/g/h. The emissions of propene and methyl ethyl ketone (MEK) were <80 ngC/g/h, and those of isoprene and C5-alcohols were between 10-130 ngC/g/h. The oxygenated species represented 70-75% of the total. The emission of VOCs was found to vary by up to a factor of three between plants of the same species, and by up to a factor of two between the different species. The annual source of methanol from savanna grasses worldwide estimated in this work was 3 to 4.4 TgC, which could represent up to 12% of the current estimated global emission from terrestrial vegetation. Two of the studied tree species, were isoprene emitters, and isoprene was also their primary emission (which accounted for 70-94% of the total carbon emitted) followed by methanol and butene + butanol. The daytime average emission rate of isoprene measured in the wet season was 27 mgC/g/h for B. crassifolia, and 123 mgC/g/h for C. vitifolium. The daytime emissions of methanol and butene + butanol were between 0.3 and 2 mgC/g/h. The total sum of VOCs emission measured during the day in the wet season was between 30 and 130 mgC/g/h. In the dry season, in contrast, the methanol emissions from C. vitifolium saplings –whose leaves were still developing– were an order of magnitude higher than in the wet season (15 mgC/g/h). The isoprene emission from B. crassifolia in the dry season was comparable to the emission in the wet season, whereas isoprene emission from C. vitifolium was about a factor of three lower (~43 mgC/g/h). Biogenic emission inventories show that isoprenoids are the most prominent and best-studied compounds. The standard emission rates of isoprene and monoterpenes of the measured savanna trees were in the lower end of the range found in the literature. The emission of other biogenic VOCs has been sparsely investigated, but in general, the standard emissions from trees studied here were within the range observed in previous investigations. The biomass burning study comprised the measurement of VOCs and other trace-gas emissions of 44 fires from 15 different fuel types, primarily from Africa and Indonesia, in a combustion laboratory. The average sum of emissions (excluding CO2, CO and NO) from African fuels was ~18 g(VOC)/kg. Six of the ten most important emissions were oxygenated VOCs. Acetic acid was the major emission, followed by methanol and formaldehyde. The emission of methane was of the same order as the methanol emission (~5 g/kg), and that of nitrogen-containing compounds was ~1 g/kg. An estimate of the VOC source from biomass burning of savannas and grasslands worldwide suggests that the sum of emissions is about 56 Tg/yr, of which 34 Tg correspond to oxygenated VOCs, 14 Tg to unsaturated and aromatic compounds, 5 Tg to methane and 3 Tg to N-compounds. The estimated emissions of CO, CO2 and NO are 216, 5117 and 9.4 Tg/yr, respectively. The emission factors reported here for Indonesian fuels are the first results of laboratory fires using Indonesian fuels. Acetic acid was the highest organic emission, followed by acetol, a compound not previously reported in smoke, methane, mass 97 (tentatively identified as furfural, dimethylfuran and ethylfuran), and methanol. The sum of total emissions of Indonesian fuels was 91 g/kg, which is 5 times higher than the emissions from African fuels. The results of this study reinforces the importance of oxygenated compounds. Due to the vast area covered by tropical savannas worldwide, the biogenic and biomass burning emission of methanol and other oxygenated compounds may be important for the regional and even global tropospheric chemistry.