976 resultados para building construction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Building construction is a highly competitive and risky business. This competitiveness is compounded where conflicting objectives amongst contracting and subcontracting firms sets the stage for an adversarial and potentially destructive approach. There is a need for change in the construction industry—not only to a more cooperative approach to build mutual trust, respect and good faith—but also from a confrontationist and adversarial attitude to a harmonious relationship. It is necessary to change the culture to create a win-win situation. “Strategic Alliances” is one such concept. A strategic alliance is a cooperative arrangement between two or more organisations that forms part of their overall strategies, and contributes to achieving their major goals and objectives. This paper begins with an overview of the Australian building construction industry, then reviews the literature and describes an analysis framework comprising six attributes of strategic alliances—trust, commitment, interdependence, cooperation, communication, and joint problem solving. Given the trend towards greater emphasis on broader contracting firm performance criteria, indicators are proposed as a component of the tender evaluation process for public works.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Building construction is a highly competitive and risky business. This competitiveness is compounded where conflicting objectives amongst contracting and subcontracting firms set the stage for an adversarial and potentially destructive business relationship. Clients, especially those from the public sector, need broader tender evaluation criteria to complement the traditional focus on bid price. There is also a need for change in the construction industry—not only to a more cooperative approach between the constructing parties—but also from a confrontationist attitude to a more harmonious relationship between all stakeholders in providing constructed facilities. A strategic alliance is a cooperative relationship between two or more organisations that forms part of their overall strategies, and contributes to achieving their major goals and objectives. Strategic alliances in building construction may provide a useful tool to assist public sector construction managers evaluate tenders and concurrently encourage more cooperative relationships amongst construction stakeholders. This paper begins with an overview of the Australian building construction industry, then reviews the existing strategic alliance literature and describes an analysis framework comprising six attributes of strategic alliances for application to construction organisations—trust, commitment, interdependence, cooperation, communication, and joint problem solving. These attributes are currently being used to collect data from 70 building construction firms in Queensland to assess their respective levels of strategic alliance. Given the trend towards broader indicators of construction firm performance, these attributes are proposed as a tool for use in the tender evaluation process for public works.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The construction industry demands priority from all governments because it impacts economically and socially on all citizens. A number of recent studies have identified inefficiencies in the Australian construction industry by modelling the building process. A culture of reform supported by industry and government is now emerging in the industry – one in which alternate forms of project delivery are being trialed. The Australian Building and Construction Industry Action Agenda brought together industry and government to identify actions necessary to lift Australia’s innovative and knowledge creating capacity at the sector level. A central activity under this Action Agenda was dissemination of information relating to industry best practice initiatives in innovation, project delivery and the use of information technology. Government and industry identified project alliance contracting and more advanced information technology as means to increase efficiency in construction as part of a new innovative procurement environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The building sector is widely recognized as having a major impact on sustainable development. Both in developed and developing countries, sustainability in buildings approaches are growing. Laterite dimension stone (LDS) is a building material that was traditionally used in sub-Saharan Africa, but its technical features still need to be assessed. This article presents some results of a study focused on the characterization of LDS exploited in Burkina Faso for building purposes. The measured average thermal conductivity is 0.51  W/mK, which increases with water content and evolves with the specific gravity and with porosity. Rock mineral phases (quartz, goethite, hematite, magnetite) are cemented by kaolinite. The porosity of the material is high (30%), with macropores visible on the surface and found in the rock inner structure as well. Results from the hygrothermal monitoring of a pilot building are also presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

International pressure to reduce greenhouse gas emissions has forced many countries to look beyond 'demand side' measures. Several industry sectors are examining indirect requirements for energy and other resources that involve significant greenhouse gas emissions. The operation of buildings is responsible for approximately one quarter of greenhouse gas emissions in Australia. Moreover, he construction process consumes vast quantities of raw materials and complex goods and services each year. Each of the processes required for the provision of these products requires energy, and most of this is fossil fuel based. A national model of greenhouse gas emissions is required for residential building construction, to indicate where emissions reduction strategies should focus. A disaggregated input-output model is developed for the Australian residential building construction sector, and recommendations are made about how this model can be used in the development of policies of emissions mitigation for both the sector and individual residential buildings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Growing global concern regarding the rapid rate at which humans are consuming the earth’s precious natural resources is leading to greater emphasis on more effective means of providing for our current and future needs. Energy and fresh water are the most crucial of these basic human needs. The energy and water required in the operation of buildings is fairly well known. Much less is known about the energy and water embodied in construction materials and products. It has been suggested that embodied energy typically represents 20 times the annual operational energy of current Australian buildings. Studies have suggested that the water embodied in buildings may be just as significant as that of energy. As for embodied energy, these studies have been based on traditional analysis methods, such as process and input-output analysis. These methods have been shown to suffer from errors relating to the availability of data and its reliability. Hybrid methods have been developed in an attempt to provide a more reliable assessment of the embodied energy and water associated with the construction of buildings. This paper evaluates the energy and water resources embodied in a commercial office building using a hybrid analysis method based on input-output data. It was found that the use of this hybrid analysis method increases the reliability and completeness of an embodied energy and water analysis of a typical commercial building by 45% and 64% respectively, over traditional analysis methods. The embodied energy and water associated with building construction is significant and thus represents an area where considerable energy and water savings are possible over the building life-cycle. These findings suggest that current best-practice methods of embodied energy and water analysis are sufficiently accurate for most typical applications, but this is heavily dependent upon data quality and availability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Environmental decision making during the building design process has typically focused on improvements to operational efficiencies. Improvements to thermal performance and efficiency of appliances and systems within buildings both aim to reduce resource consumption and environmental impacts associated with the operation of buildings. Significant reductions in building energy and water consumption are possible; however often the impacts occurring across the other stages of a building‘s life are not considered or are seen as insignificant in comparison.

Previous research shows that embodied impacts (raw material extraction, processing, manufacture, transportation and construction) can be as significant as those related to building operation. There is, however, limited consistent and comprehensive information available for building designers to make informed decisions in this area. Often the information that is available is from disparate sources, which makes comparison of alternative solutions unreliable and risky. lt is also important that decisions are made from a life cycle perspective, ensuring that strategies to reduce environmental impacts from one life cycle stage do not come at the expense of an increase in overall life cycle impacts

A consistent and comprehensive framework for assessing and specifying building assemblies for enhanced environmental outcomes does not currently exist. This paper presents the initial findings of a project that aims to establish a database of the life cycle energy requirements of a broad range of construction assemblies, based on a comprehensive assessment framework. Life cycle energy requirements have been calculated for eight standard residential construction assemblies integrating an innovative embodied energy assessment technique with thermal performance simulation modelling and ranked according to their performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A reliable forecasting for future construction costs or prices would help to ensure the budget of a construction project can be well planned and limited resources can be allocated more appropriately in construction firms. Although many studies have been focused on the construction price modelling and forecasting, few researchers have considered the impacts of the global economic events and seasonality in price modelling and forecasting. In this study, an advanced multivariate modelling technique, namely the vector correction (VEC) model with dummy variables was employed and the impacts of the global economic event and seasonality were factored into the forecasting model for the building construction price in the Australian construction market. Research findings suggest that a long-run equilibrium relationship exists among the price, levels of supply and demand in the construction market. The reliability of forecasting models was examined by mean absolute percentage error (MAPE) and The Theil's inequality coefficient U tests. The results of MAPE and U tests suggest that the conventional VEC model and the VEC model with dummy variable are both acceptable for forecasting building construction prices, while the VEC model that considered external impacts achieves higher prediction accuracy than the conventional VEC model does.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Building environmental design typically focuses on improvements to operational efficiencies such as building thermal performance and system efficiency. Often the impacts occurring across the other stages of a building's life are not considered or are seen as insignificant in comparison. However, previous research shows that embodied impacts can be just as important. There is limited consistent and comprehensive information available for building designers to make informed decisions in this area. Often the information that is available is from disparate sources, which makes comparison of alternative solutions unreliable. It is also important to ensure that strategies to reduce environmental impacts from one life cycle stage do not come at the expense of an increase in overall life-cycle impacts. A consistent and comprehensive framework for assessing and specifying building assemblies for enhanced environmental outcomes does not currently exist. This article presents the initial findings of a project that aims to establish a database of life cycle energy requirements for a broad range of construction assemblies, based on a comprehensive assessment framework. Life cycle energy requirements have been calculated for eight residential construction assemblies integrating an innovative embodied energy assessment technique with thermal performance modelling and ranked according to their performance. © #2010 Earthscan ISSN: 0003-8628.