934 resultados para buffalo reproduction
Resumo:
Currently, timed ovulation induction and timed artificial insemination (TAI) can be performed in buffalo using GnRH or estradiol plus progesterone/progestin (P4)-releasing devices and prostaglandin F-2 alpha (PGF(2 alpha)). The control of the emergence of follicular waves and of ovulation at predetermined times, without the need for estrus detection, has facilitated the management and improved the efficiency of AI programs in buffalo during the breeding and nonbreeding season. Multiple ovulations, embryo transfer, ovum collection and in vitro embryo production have been shown to be feasible in buffalo, although low efficiency and limited commercial application of these techniques have been documented as well. These results could be associated with low ovarian follicular pools, high levels of follicular atresia and failures of the oocyte to enter the oviduct after superstimulation of follicular growth. This review discusses a number of key points related to the manipulation of ovarian follicular growth to improve pregnancy rates following TAI and embryo transfer of in vivo- and in vitro-derived embryos in buffalo.
Resumo:
Pós-graduação em Medicina Veterinária - FMVZ
Resumo:
The objectives of this investigation were to understand transplacental transport of iron by secreted uteroferrin (UF) and haemophagous areas of water buffalo placenta and clarify the role(s) of blood extravasation at the placental-maternal interface. Placentomes and interplacentomal region of 51 placentae at various stages of gestation were fixed, processed for light and transmission electron microscopy, histochemistry and immunohistochemistry. Haemophagous areas were present in placentomes collected between 4 and 10 months of pregnancy. Perl`s reaction for ferric iron was negative in placentomes, but positive in endometrial glands. Positive staining for UF indicated areas in which it was being taken up by phagocytosis and/or fluid phase pinocytosis in areolae of the interplacentomal mesenchyme, with little staining in endometrial stroma. Imunohistochemistry detected UF in trophectoderm of haemophagous regions of placentomes and in other parts of the foetal villous tree, but the strongest immunostaining was in the epithelial cells and lumen of uterine glands. Ultrastructural analyses indicated that erythrophagocytosis was occurring and that erythrocytes were present inside cells of the chorion that also contained endocytic vesicles and caveolae. Results of this study indicate that both the haemophagous areas of placentomes and the areolae at the interface between chorion and endometrial glands are important sites for iron transfer from mother to foetal-placental tissues in buffalo throughout pregnancy.
Resumo:
The potential to use a GnRH agonist bioimplant and injection of exogenous LH to control the time of ovulation in a multiple ovulation and embryo transfer (MOET) protocol was examined in buffalo. Mixed-parity buffalo (Bubalus bubalis; 4-15-year-old; 529 13 kg LW) were randomly assigned to one of five groups (n = 6): Group 1, conventional MOET protocol; Group 2, conventional MOET with 12 It delay in injection of PGF(2alpha); Group 3, implanted with GnRH agonist to block the pre-ovulatory surge release of LH; Group 4, implanted with GnRH agonist and injected with exogenous LH (Lutropin(R), 25 mg) 24 h after 4 days of superstimulation with FSH; Group 5, implanted with GnRH agonist and injected with LH 36 h after superstimulation with FSH. Ovarian follicular growth in all buffaloes was stimulated by treatment with FSH (Folltropin-V(R), 200 mg) administered over 4 days, and was monitored by ovarian ultrasonography. At the time of estrus, the number of follicles greater than or equal to8 mm. was greater (P < 0.05) for buffaloes in Group 2 (12.8) than for buffaloes in Groups 1 (8.5), 3 (7.3), 4 (6.1) and 5 (6.8), which did not differ. All buffaloes were mated by AI after spontaneous (Groups 1-3) or induced (Groups 4 and 5) ovulation. The respective number of buffalo that ovulated, number of corpora lutea, ovulation rate (%), and embryos + oocytes recovered were: Group 1 (2, 1.8 +/- 1.6, 18.0 +/- 13.6, 0.2 +/- 0.2); Group 2 (4, 6.1 +/- 2.9, 40.5 +/- 17.5, 3.7 +/- 2.1); Group 3 (0, 0, 0, 0); Group 4 (6, 4.3 +/- 1.2, 69.3 +/- 14.2, 2.0 +/- 0.9); and Group 5 (1, 2.5 +/- 2.5, 15.5 +/- 15.5, 2.1 +/- 2.1). All buffaloes in Group 4 ovulated after injection of LH and had a relatively high ovulation rate (69%) and embryo recovery (46%). It has been shown that the GnRH agonist-LH protocol can be used to improve the efficiency of MOET in buffalo. (C) 2002 Elsevier Science Inc. All rights reserved.
Resumo:
The objective of this study was to evaluate the effect of bovine somatotropin (bST) on ovarian follicular population in buffalo heifers and its influence on oocyte quality, recovery rates and in vitro embryo production. We tested the hypothesis that bST treatment in buffalo females submitted to an ovum pick-up (OPU) program Would improve the number of follicles recruited, oocyte quality and in vitro embryo production. A total of 10 heifers were assigned into two treatment groups: group bST (n = 5; receiving 500 mg of bST in regular intervals) and control group (n = 5; without additional treatment). Both groups were subjected to OPU sessions twice a week (every 3 or 4 days), for a total of 10 sessions per female, although due to procedural problems, only the first five OPU sessions produced embryos. The number of follicles and the diameters were recorded at all OPU sessions. The harvested oocytes were counted and classified according to their quality as either A, B, C, D or E, with A and B considered good quality. Cleavage and blastocyst production rates were evaluated 2 and 7 days after in vitro fertilization, respectively. The bST treatment increased the total number of antral follicles (> 3 mm in diameter; 12.2 compared with 8.7: p, < 0.05) and of small antral follicles (< 5 mm; 9.1 compared with 6.5; p < 0.05) per OPU session. The bST also tended to increase the number of oocytes recovered per session (5.2 compared with 4.1; p = 0.07), and enhanced the percentage of good quality oocytes (48.8% compared with 40.6%; p = 0.07), bST showed no effect on cleavage and blastocyst production rates (p > 0.05). The significant effects of performing repeated OPU sessions were decreasing the follicular population (p < 0.001) as well as the number of follicles aspirated (p < 0.001), and oocytes recovered (p < 0.02). In conclusion, bST treatment improves the follicular population, demonstrating its possible application in buffalo donors submitted to OPU programs. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Reproductive rate is an important component of economic success in livestock production. Parturition interval (IEP) is a direct measure of the productivity of the animal. Long IEP reduce the number of calves produced per year. The objective this study was to determine the distribution of parturitions across month and to evaluate factors affecting IEP. The data included 7,588 parturitions of Murrah, Mediterranean and Carabobo buffalo from 10 herds in Southern and South-eastern Brazil. The analysis of distribution of parturitions evaluated the effects of month, year and their interaction on birth date of calves by using a Chi-Square test in SAS PROC FREQ (SAS Institute, Cary, NC, USA). Parturition intervals (n = 2,630) were evaluated using analysis of variance in SAS PROC GLM. The model for IEP included the fixed effects of season (December to May = 1, June to November = 2), year, season x year, sex of the preceding parturition, age of weaning of the previous calf, and herd. All sources of variation were significant (P<0.0001) except sex of the preceding parturition (P <0.85). The mean IEP was 446.7 +/- 10.4 days, for seasons 1 and 2 IEP were 419.8 +/- 11.3 and 473.6 +/- 40.7 days, respectively, a difference of 54 days. As weaning age increased there was a lengthening of IEP. Buffalo in Brazil showed seasonal parturition with calving concentrated from January to April, although the frequency by month differed across years (P<0.0001). These months also had the lowest calving interval.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The water buffalo is vital to the lives of small farmers and to the economy of many countries worldwide. Not only are they draught animals, but they are also a source of meat, horns, skin and particularly the rich and precious milk that may be converted to creams, butter, yogurt and many cheeses. Genome analysis of water buffalo has advanced significantly in recent years. This review focuses on currently available genome resources in water buffalo in terms of cytogenetic characterization, whole genome mapping and next generation sequencing. No doubt, these resources indicate that genome science comes of age in the species and will provide knowledge and technologies to help optimize production potential, reproduction efficiency, product quality, nutritional value and resistance to diseases. As water buffalo and domestic cattle, both members of the Bovidae family, are closely related, the vast amount of cattle genetic/genomic resources might serve as shortcuts for the buffalo community to further advance genome science and biotechnologies in the species.
Resumo:
The objectives of this investigation were to understand transplacental transport of iron by secreted uteroferrin (UF) and haemophagous areas of water buffalo placenta and clarify the role(s) of blood extravasation at the placental-maternal interface. Placentomes and interplacentomal region of 51 placentae at various stages of gestation were fixed, processed for light and transmission electron microscopy, histochemistry and immunohistochemistry. Haemophagous areas were present in placentomes collected between 4 and 10 months of pregnancy. Perl's reaction for ferric iron was negative in placentomes, but positive in endometrial glands. Positive staining for UF indicated areas in which it was being taken up by phagocytosis and/or fluid phase pinocytosis in areolae of the interplacentomal mesenchyme, with little staining in endometrial stroma. Imunohistochemistry detected UF in trophectoderm of haemophagous regions of placentomes and in other parts of the foetal villous tree, but the strongest immunostaining was in the epithelial cells and lumen of uterine glands. Ultrastructural analyses indicated that erythrophagocytosis was occurring and that erythrocytes were present inside cells of the chorion that also contained endocytic vesicles and caveolae. Results of this study indicate that both the haemophagous areas of placentomes and the areolae at the interface between chorion and endometrial glands are important sites for iron transfer from mother to foetal-placental tissues in buffalo throughout pregnancy.
Resumo:
The objective of this study was to evaluate the influence of inbreeding depression on traits of buffaloes from Brazil. Specifically, the traits studied were body weight at 205 and 365 days of age, average daily gain from birth to 205 days (ADG_205), average daily gain between 205 and 365 days (ADG205_365) in Mediterranean buffaloes, and milk yield, lactation length, age of first calving and calving intervals in Murrah buffaloes. Inbreeding effects on the traits were determined by fitting four regression models (linear, quadratic, exponential and Michaelis-Menten) about the errors generated by the animal model. The linear model was only significant (P<0.05) for growth traits (exception of ADG205_365). The exponential and Michaelis-Menten models were significant (P<0.01) for all the studied traits while the quadratic model was not significant (P>0.05) for any of the traits. Weight at 205 and 365 days of age decreased 0.25kg and 0.39kg per 1% of increase in inbreeding, respectively. The inbred animals (F=0.25) produced less milk than non-inbred individuals: 50.4kg of milk. Moreover, calving interval increased 0.164 days per 1% of increase in inbreeding. Interestingly, inbreeding had a positive effect on age at first calving and lactation length, decreasing age of first calving and increasing lactation length. © 2012 Japanese Society of Animal Science.
Resumo:
The aim of the present study was to evaluate the effect of bovine somatotropin (bST; 500 mg) administration on lactating buffalo donors submitted to two different ovum pick-up (OPU) and in vitro embryo production schemes with a 7 or 14 d intersession OPU interval. A total of 16 lactating buffalo cows were randomly assigned into one of four experimental groups according to the bST treatment (bST or No-bST) and the OPU intersession interval (7 or 14 d) in a 2 x 2 factorial design (16 weeks of OPU sessions). The females submitted to OPU every 14d had a larger (P < 0.001) number of ovarian follicles suitable for puncture (15.6 +/- 0.7 vs. 12.8 +/- 0.4) and an increased (P = 0.004) number of cumulus-oocyte complexes (COCs) recovered (10.0 +/- 0.5 vs. 8.5 +/- 0.3) compared to the 7 d interval group. However, a 7 or 14 d interval between OPU sessions had no effect (P = 0.34) on the number of blastocysts produced per OPU (1.0 +/- 0.1 vs. 13 +/- 0.2, respectively). In addition, bST treatment increased (P < 0.001) the number of ovarian follicles suitable for puncture (15.3 +/- 0.5 vs. 12.1 +/- 0.4) but reduced the percentage (18.9% vs. 10.9%; P = 0.009) and the number (1.4 +/- 0.2 vs. 0.8 +/- 0.1; P = 0.003) of blastocysts produced per OPU session compared with the non-bST-treated buffaloes. In conclusion, the 14d interval between OPU sessions and bST treatment efficiently increased the number of ovarian follicles suitable for puncture. However, the OPU session interval had no effect on embryo production, and bST treatment reduced the in vitro blastocyst outcomes in lactating buffalo donors.
Resumo:
At head of title: State of New York.
Resumo:
The basic reproduction number is a key parameter in mathematical modelling of transmissible diseases. From the stability analysis of the disease free equilibrium, by applying Routh-Hurwitz criteria, a threshold is obtained, which is called the basic reproduction number. However, the application of spectral radius theory on the next generation matrix provides a different expression for the basic reproduction number, that is, the square root of the previously found formula. If the spectral radius of the next generation matrix is defined as the geometric mean of partial reproduction numbers, however the product of these partial numbers is the basic reproduction number, then both methods provide the same expression. In order to show this statement, dengue transmission modelling incorporating or not the transovarian transmission is considered as a case study. Also tuberculosis transmission and sexually transmitted infection modellings are taken as further examples.