378 resultados para buds
Resumo:
Budbreak in kiwifruit (Actinidia deliciosa) can be poor in locations that have warm winters with insufficient winter chilling. Kiwifruit vines are often treated with the dormancy-breaking chemical hydrogen cyanamide (HC) to increase and synchronize budbreak. This treatment also offers a tool to understand the processes involved in budbreak. A genomics approach is presented here to increase our understanding of budbreak in kiwifruit. Most genes identified following HC application appear to be associated with responses to stress, but a number of genes appear to be associated with the reactivation of growth. Three patterns of gene expression were identified: Profile 1, an HC-induced transient activation; Profile 2, an HC-induced transient activation followed by a growth-related activation; and Profile 3, HC- and growth-repressed. One group of genes that was rapidly up-regulated in response to HC was the glutathione S-transferase (GST) class of genes, which have been associated with stress and signalling. Previous budbreak studies, in three other species, also report up-regulated GST expression. Phylogenetic analysis of these GSTs showed that they clustered into two sub-clades, suggesting a strong correlation between their expression and budbreak across species.
Resumo:
Can a new giant salvinia infestation occur even if most of the mat is destroyed except for the protected buds? From this study, we are able to conclude that buds can produce new growth under certain stressful conditions. They must be greater than 0.2 cm in length and they must possess greater than 30% moisture content to survive.
Resumo:
American pondweed ( Potamogeton nodosus Poir.) is commonly found in northern California irrigation canals. The purpose of this study was to test the hypothesis that exposure of American pondweed winter buds to dilute acetic acid under field conditions would result in reduced subsequent biomass.
Resumo:
The widely-adopted protocol for the cryopreservation of winter buds of fruit trees, such as Malus and Pyrus, was developed in a region with a continental climate, that provides relatively hard winters with a consequent effect on adaptive plant hardiness. In this study the protocol was evaluated in a typical maritime climate (eastern Denmark) where milder winters can be expected. The survival over two winters was evaluated, looking at variation between seasons and cultivars together with the progressive reduction in survival due to individual steps in the protocol. The study confirms that under such conditions significant variation in survival can be expected and that an extended period of imposed dehydration at -4oC is critical for bud survival. The occurrence of freezing events during this treatment suggests that cryodehydration may be involved, as well as evaporative water loss. To optimize the protocol for maritime environments, further investigation into the water status of the explants during cryopreservation is proposed. Keywords: Malus x domestica, cryopreservation, dormant bud, survival, grafting
Resumo:
Abstract The established protocol for the cryopreservation of winter-dormant Malus buds requires that stem explants, containing a single, dormant bud are desiccated at -4°C, for up to 14 days, to reduce their water content to 25-30% of fresh weight. Using three apple cultivars, with known differences in response to cryopreservation, the pattern of evaporative water loss has been characterised, including early freezing events in the bud and cortical tissues that allow further desiccation by water migration to extracellular ice. There were no significant differences between cultivars in this respect or in the proportions of tissue water lost during the desiccation process. Differential Scanning Calorimetry (to -90°C) of intact buds indicated that bud tissues of the cultivar with the poorest response to cryopreservation had the highest residual water content at the end of the desiccation process and froze at the highest temperature Keywords: Malus, cryopreservation, dormant bud, dehydration
Resumo:
The fig tree (Ficus carica L.) is a fruit tree of great world importance and, therefore, the genetic improvement becomes an important field of research for the crop improvement, being necessary to gather information on this species, mainly regarding its genetic variability so that appropriate propagation projects and management are made. However, the fig, in Brazil, is all produced from only one cultivar, Roxo de Valinhos, which produces seedless fruit, making impossible the conventional breeding. So, the fig breeding through induced mutagenic becomes a very important research line, greatly contributing to the fig culture development. The objective of this study was to select fig plants formed by cuttings treated with gamma ray. The plants used were obtained from buds of the cv. Roxo de Valinhos. The cuttings were irradiated with gamma rays in an irradiator Gamma Cell at 10 cm from the tip of the cutting, at doses of 30 Gy with dose rate of 238 Gy/h. The experiment consisted of 450 treatments, where each formed plant was a treatment. The treatments were numbered sequentially from 1 to 450 and spaced 2.5 x 1.5 m. It was evaluated the vegetative and the fruits characteristics, and the incidence of major crop pests and diseases. The analysis data showed that there is genetic variability among treatments and that the plants under numbers 1, 5, 20, 79, 164, 189, 194, 201, 221, 214, 258, 301, 322, 392, 433 and 440 are probably genetic mutants that should be tested as commercial orchards.
Resumo:
Defining new therapeutic strategies to overcome therapy resistance due to tumor heterogeneity in colon cancer is challenging. One option is to explore the molecular profile of aggressive disseminating tumor cells. The cytoskeleton-associated Death-associated protein kinase (DAPK) is involved in the cross talk between tumor and immune cells at the invasion front of colorectal cancer. Here dedifferentiated tumor cells histologically defined as tumor budding are associated with a high risk of metastasis and poor prognosis. Analyzing samples from 144 colorectal cancer patients we investigated immunhistochemical DAPK expression in different tumor regions such as center, invasion front, and buds. Functional consequences for tumor aggressiveness were studied in a panel of colon tumor cell lines using different migration, wound healing, and invasion assays. DAPK levels were experimentally modified by siRNA transfection and overexpression as well as inhibitor treatments. We found that DAPK expression was reduced towards the invasion front and was nearly absent in tumor buds. Applying the ECIS system with HCT116 and HCT116 stable lentiviral DAPK knock down cells (HCTshDAPK) we identified an important role for DAPK in decreasing the migratory capacity whereas proliferation was not affected. Furthermore, the migration pattern differed with HCTshDAPK cells showing a cluster-like migration of tumor cell groups. DAPK inhibitor treatment revealed that the migration rate was independent of DAPK's catalytic activity. Modulation of DAPK expression level in SW480 and DLD1 colorectal cancer cells significantly influenced wound closure rate. DAPK seems to be a major player that influences the migratory capability of disseminating tumor cells and possibly affects the dynamic interface between pro- and anti-survival factors at the invasion front of colorectal cancer. This interesting and new finding requires further evaluation.
Resumo:
This study aimed at characterizing the Sonic hedgehog (shh) gene in newt limbs, which encodes a signaling molecule of the zone of polarizing activity (ZPA) responsible for determining the anterior–posterior axis of the embryonic chicken and mouse limbs. The reverse transcription–PCR showed that adult newt regenerating limbs express shh genes. In situ hybridization experiments demonstrated that shh genes were expressed in mesenchymal cells of the posterior region of both embryonic buds and regenerating blastemas of newt limbs, strongly suggesting the presence of ZPA in these tissues. Experiments of the axial reversal graft of blastemas further supported this suggestion. The grafted blastemas regenerated supernumerary limbs, and this has been explained by three models: the polar coordinate model, the boundary model, and the polarizing zone model. In favor of the third model, the shh gene was expressed not only in the original region (new anterior region) of the graft, but also ectopically in the other region (new posterior region) of the same graft. This study implies that the regenerating limb blastema produces ZPA as the signaling center of the AP patterning as in the developing limb bud and, therefore, supports the notion that the limb regeneration recapitulates the limb development.
Resumo:
It has been shown previously that the morphology and subcellular positioning of the Golgi complex is controlled by actin microfilaments. To further characterize the association between actin microfilaments and the Golgi complex, we have used the Clostridium botulinum toxins C2 and C3, which specifically inhibit actin polymerization and cause depolymerization of F-actin in intact cells by the ADP ribosylation of G-actin monomers and the Rho small GTP-binding protein, respectively. Normal rat kidney cells treated with C2 showed that disruption of the actin and the collapse of the Golgi complex occurred concomitantly. However, when cells were treated with C3, the actin disassembly was observed without any change in the organization of the Golgi complex. The absence of the involvement of Rho was further confirmed by the treatment with lysophosphatidic acid or microinjection with the constitutively activated form of RhoA, both of which induced the stress fiber formation without affecting the Golgi complex. Immunogold electron microscopy in normal rat kidney cells revealed that β- and γ-actin isoforms were found in Golgi-associated COPI-coated buds and vesicles. Taken together, the results suggest that the Rho signaling pathway does not directly regulate Golgi-associated actin microfilaments, and that β- and γ-actins might be involved in the formation and/or transport of Golgi-derived vesicular or tubular intermediates.
Resumo:
Intracellular transfers between membrane-bound compartments occur through vesicles that bud from a donor compartment to fuse subsequently with an acceptor membrane. We report that the membrane that delimits COP I or COP II-coated buds/vesicles from the endoplasmic reticulum and the Golgi complex has a thinner interleaflet clear space as compared with the surrounding, noncoated parental membrane. This change is compatible with a compositional change of the membrane bilayer during the budding process.
Resumo:
One of the first and most enduring roles identified for the plant hormone auxin is the mediation of apical dominance. Many reports have claimed that reduced stem indole-3-acetic acid (IAA) levels and/ or reduced basipetal IAA transport directly or indirectly initiate bud growth in decapitated plants. We have tested whether auxin inhibits the initial stage of bud release, or subsequent stages, in garden pea (Pisum sativum) by providing a rigorous examination of the dynamics of auxin level, auxin transport, and axillary bud growth. We demonstrate that after decapitation, initial bud growth occurs prior to changes in IAA level or transport in surrounding stem tissue and is not prevented by an acropetal supply of exogenous auxin. We also show that auxin transport inhibitors cause a similar auxin depletion as decapitation, but do not stimulate bud growth within our experimental time- frame. These results indicate that decapitation may trigger initial bud growth via an auxin-independent mechanism. We propose that auxin operates after this initial stage, mediating apical dominance via autoregulation of buds that are already in transition toward sustained growth.