846 resultados para brood stock
Resumo:
89 ripe female brooders of the catfish, Clarias anguillaris (Body wt. Range 150g-1, 200g) were induced to spawn by hormone (Ovaprim) induced natural spawning technique over a period of 10 weeks. Matching ripe males were used for pairing the females at the ratio of two males to a female. Six ranges of brood stock body weights were considered as follows; <200g; 200g-399g; 400g-599g; 600-799g; 800g-999g; > 1000g and the number of fry produced by each female brooder was scored/recorded against the corresponding body weight range. The number of fry per unit quantity of hormone and the cost of production a fry based on the current price of Ovaprim (hormon) were determined so as to ascertain most economic size range. The best and most economic size range was between 400g-599g body weight with about 20,000 fry per ml of hormone and N0.028 per fry, while the females above 1000g gave the poorest results of 9,519 fry per ml of hormone and N0.059 per fry. For optimum production of Clarias anguillaris fry and maximum return on investment female brooders of body weights ranging between 400g-599g are recommended for hormone induced natural breeding exercises
Resumo:
89 ripe female brooders of the catfish, Clarias anguillaris (Body wt. Range 150g-1, 200g) were induced to spawn by hormone (Ovaprim) induced natural spawning technique over a period of 10 weeks. Matching ripe males were used for pairing the females at the ratio of two males to a female. Six ranges of brood stock body weights were considered as follows; <200g; 200g-399g; 400g-599g; 600-799g; 800g-999g; > 1000g and the number of fry produced by each female brooder was scored/recorded against the corresponding body weight range. The number of fry per unit quantity of hormone and the cost of production a fry based on the current price of Ovaprim (hormon) were determined so as to ascertain most economic size range. The best and most economic size range was between 400g-599g body weight with about 20,000 fry per ml of hormone and N0.028 per fry, while the females above 1000g gave the poorest results of 9,519 fry per ml of hormone and N0.059 per fry. For optimum production of Clarias anguillaris fry and maximum return on investment female brooders of body weights ranging between 400g-599g are recommended for hormone induced natural breeding exercises
Resumo:
Studies on genetic improvement of penaeid prawns for the character higher tail weight using methods of selective breeding were undertaken. Prior to the actual breeding experiments it was necessary to find out the quantum of available variability in the character tail weight amongst the natural populations of Penaeus merguiensis from the Indian waters. Thirteen morphometric variables were measured and various statistical analyses were carried out. The tail weight showed almost double values of coefficient of variation in the females than the males (C.V. 20.37 and 11.08 respectively). The combination of the characters viz. sixth segment length (SSL), sixth segment depth (SSD) and posterior abdominal circumference (PAC) gave the highest R super(2) values. These variables were easy to measure and gave maximum variation in the character tail weight without sacrificing the breeders in the brood stock. The quantitative character tail weight was influenced by both genetic and environmental factors was statistically ascertained by applying 2-Factor analysis.
Resumo:
Available of carp breeders in their prim state of maturity is a major constraint in hypophysation. Experiments conducted in a fish farm at Naihati, West Bengal, for two consecutive years, 1983-84 and 1984-85, clearly prove that by manipulation of environmental parameters such as metabolites, dissolved oxygen, running water conditions, as also of stock densities and quality and quantity of feed. Catla catla, Hypophythalmichthys molitrix, Labeo rohita, Cirrhina mrigala and Ctenopharyngodon idella can be made to attain better maturity and spawning stage much earlier than normal i.e. even in summer months and the entire stock spawned during the period from March to September. Percentage of successful breeding, quantities of eggs released and fertilised in relation to the body weight of all the species, were also found to be more in comparison to the brood stock raised through the conventional methods.
Resumo:
For survey incidence of nephrocalcinosis in rainbow trout fish, during winter 1385, samplings were performed in three fish farm with different water source: river, spring and recirculation system by using well water. In this survey 5 specimens from each 8 groups and in general 120 specimens of this fish were caught by random sampling, and also amounts of O2, CO2, pH and temperature of water were measured. Then blooding and renal tissue sampling performed that renal samples were fixed in 10% buffered formalin and blood samples after separating serum stored in -200C. Renal specimens transferred to pathology laboratory, pathological slides were prepared and stained by hematoxylin & Eosin method. From 120 specimens, 6 cases of fish represent nephrocalcinosis. Pathologic signs include: renal epithelial necrosis, dilated ureters, dense basophilic materials inside the dilated tubules and cast formation in some renal tubules. From 6 cases of nephrocalcinosis, 3 cases (7/5%) were related to recirculation system and 2 (5%) case were related to river water and 1 (2/5%) case was related to spring water. In survey amount of urea, creatinine and Uric acid between different weight groups, distinguished that difference between creatinine middling in different weight groups were significant and also in between healthy and afflicted fish, significant statistical difference were only in creatinine amount between healthy and afflicted fish in each farm. Amounts of O2, pH and temperature of water in three farms were in normal range and only rate of water CO2 in ponds of recirculatory system were very higher (25 mg/lit) than other farms. May be, this reason led to high number of nephrocalcinosis in recirculatory system, than other farms, nemley 7/5% of fish that caught from this farm .This subject is related to the role of CO2 in creating nephrocalcinosis which is descript in references.
Resumo:
The mud crab (Scylla spp.) aquaculture industry has expanded rapidly in recent years in many countries in the Indo - West Pacific (IWP) region as an alternative to marine shrimp culture because of significant disease outbreaks and associated failures of many shrimp culture industries in the region. Currently, practices used to produce and manage breeding crabs in hatcheries may compromise levels of genetic diversity, ultimately compromising growth rates, disease resistance and stock productivity. Therefore, to avoid “genetic pollution” and its harmful effects and to promote further development of mud crab aquaculture and fisheries in a sustainable way, a greater understanding of the genetic attributes of wild and cultured mud crab stocks is required. Application of these results can provide benefits for managing wild and cultured Asian mud crab populations for multiple purposes including for commercial production, recreation and conservation and to increase profitability and sustainability of newly emerging crab culture industries. Phylogeographic patterns and the genetic structure of Asian mud crab populations across the IWP were assessed to determine if they were concordant with those of other widespread taxa possessing pelagic larvae of relatively long duration. A 597 bp fragment of the mitochondrial DNA COI gene was amplified and screened for variation in a total of 297 individuals of S. paramamosain from six sampling sites across the species’ natural geographical distribution in the IWP and 36 unique haplotypes were identified. Haplotype diversities per site ranged from 0.516 to 0.879. Nucleotide diversity estimates among haplotypes were 0.11% – 0.48%. Maximum divergence observed among S. paramamosain samples was 1.533% and samples formed essentially a single monophyletic group as no obvious clades were related to geographical location of sites. A weak positive relationship was observed however, between genetic distance and geographical distance among sites. Microsatellite markers were then used to assess contemporary gene flow and population structure in Asian mud crab populations sampled across their natural distribution in the IWP. Eight microsatellite loci were screened in sampled S. paramamosain populations and all showed high allelic diversity at all loci in sampled populations. In total, 344 individuals were analysed, and 304 microsatellite alleles were found across the 8 loci. The mean number of alleles per locus at each site ranged from 20.75 to 28.25. Mean allelic richness per site varied from 17.2 to 18.9. All sites showed high levels of heterozygosity as average expected heterozygosities for all loci ranged from 0.917 – 0.953 while mean observed heterozygosity ranged from 0.916 – 0.959. Allele diversities were similar at all sites and across all loci. The results did not show any evidence for major differences in allele frequencies among sites and patterns of allele frequencies were very similar in all populations across all loci. Estimates of population differentiation (FST) were relatively low and most probably largely reflect intra – individual variation for very highly variable loci. Results from nDNA analysis showed evidence for only very limited population genetic structure among sampled S. paramamosain, and a positive and significant association for genetic and geographical distance among sample sites. Microsatellite markers were then employed to determine if adequate levels of genetic diversity has been captured in crab hatcheries for the breeding cycle. The results showed that all microsatellite loci were polymorphic in hatchery samples. Culture populations were in general, highly genetically depauperate, compared with comparable wild populations, with only 3 to 8 alleles recorded for the same loci set per population. In contrast, very high numbers of alleles per locus were found in reference wild S. paramamosain populations, which ranged from 18 to 46 alleles per locus per population. In general, this translates into a 3 to 10 fold decline in mean allelic richness per locus in all culture stocks compared with wild reference counterparts. Furthermore, most loci in all cultured S. paramamosain samples showed departures from HWE equilibrium. Allele frequencies were very different in culture samples from that present in comparable wild reference samples and this in particular, was reflected in a large decline in allele diversity per locus. The pattern observed was best explained by significant impacts of breeding practices employed in hatcheries rather than natural differentiation among wild populations used as the source of brood stock. Recognition of current problems and management strategies for the species both for the medium and long-term development of the new culture industry are discussed. The priority research to be undertaken over the medium term for S. paramamosain should be to close the life cycle fully to allow individuals to be bred on demand and their offspring equalised to control broodstock reproductive contributions. Establishing a broodstock register and pedigree mating system will be required before any selection program is implemented. This will ensure that sufficient genetic variation will be available to allow genetic gains to be sustainably achieved in a future stock improvement program. A fundamental starting point to improve hatchery practices will be to encourage farmers and hatchery managers to spawn more females in their hatcheries as it will increase background genetic diversity in culture stocks. Combining crablet cohorts from multiple hatcheries into a single cohort for supply to farmers or rotation of breeding females regularly in hatcheries will help to address immediate genetic diversity problems in culture stocks. Application of these results can provide benefits for managing wild and cultured Asian mud crab populations more efficiently. Over the long-term, application of data on genetic diversity in wild and cultured stocks of Asian mud crab will contribute to development of sustainable and productive culture industries in Vietnam and other countries in the IWP and can contribute towards conservation of wild genetic resources.
Resumo:
Sutchi catfish (Pangasianodon hypophthalmus) – known more universally by the Vietnamese name ‘Tra’ is an economically important freshwater fish in the Mekong Delta in Vietnam that constitutes an important food resource. Artificial propagation technology for Tra catfish has only recently been developed along the main branches of the Mekong River where more than 60% of the local human population participate in fishing or aquaculture. Extensive support for catfish culture in general, and that of Tra (P. hypophthalmus) in particular, has been provided by the Vietnamese government to increase both the scale of production and to develop international export markets. In 2006, total Vietnamese catfish exports reached approximately 286,602 metric tons (MT) and were valued at 736.87 $M with a number of large new export destinations being developed. Total value of production from catfish culture has been predicted to increase to approximately USD 1 billion by 2020. While freshwater catfish culture in Vietnam has a promising future, concerns have been raised about long-term quality of fry and the effectiveness of current brood stock management practices, issues that have been largely neglected to date. In this study, four DNA markers (microsatellite loci: CB4, CB7, CB12 and CB13) that were developed specifically for Tra (P. hypophthalmus) in an earlier study were applied to examine the genetic quality of artificially propagated Tra fry in the Mekong Delta in Vietnam. The goals of the study were to assess: (i) how well available levels of genetic variation in Tra brood stock used for artificial propagation in the Mekong Delta of Vietnam (breeders from three private hatcheries and Research Institute of Aquaculture No2 (RIA2) founders) has been conserved; and (ii) whether or not genetic diversity had declined significantly over time in a stock improvement program for Tra catfish at RIA2. A secondary issue addressed was how genetic markers could best be used to assist industry development. DNA was extracted from fins of catfish collected from the two main branches of the Mekong River inf Vietnam, three private hatcheries and samples from the Tra improvement program at RIA2. Study outcomes: i) Genetic diversity estimates for Tra brood stock samples were similar to, and slightly higher than, wild reference samples. In addition, the relative contribution by breeders to fry in commercial private hatcheries strongly suggest that the true Ne is likely to be significantly less than the breeder numbers used; ii) in a stock improvement program for Tra catfish at RIA2, no significant differences were detected in gene frequencies among generations (FST=0.021, P=0.036>0.002 after Bonferroni correction); and only small differences were observed in alleles frequencies among sample populations. To date, genetic markers have not been applied in the Tra catfish industry, but in the current project they were used to evaluate the levels of genetic variation in the Tra catfish selective breeding program at RIA2 and to undertake genetic correlations between genetic marker and trait variation. While no associations were detected using only four loci, they analysis provided training in the practical applications of the use of molecular markers in aquaculture in general, and in Tra culture, in particular.
Resumo:
The giant freshwater prawn (Macrobrachium rosenbergii) or GFP is one of the most important freshwater crustacean species in the inland aquaculture sector of many tropical and subtropical countries. Since the 1990’s, there has been rapid global expansion of freshwater prawn farming, especially in Asian countries, with an average annual rate of increase of 48% between 1999 and 2001 (New, 2005). In Vietnam, GFP is cultured in a variety of culture systems, typically in integrated or rotational rice-prawn culture (Phuong et al., 2006) and has become one of the most common farmed aquatic species in the country, due to its ability to grow rapidly and to attract high market price and high demand. Despite potential for expanded production, sustainability of freshwater prawn farming in the region is currently threatened by low production efficiency and vulnerability of farmed stocks to disease. Commercial large scale and small scale GFP farms in Vietnam have experienced relatively low stock productivity, large size and weight variation, a low proportion of edible meat (large head to body ratio), scarcity of good quality seed stock. The current situation highlights the need for a systematic stock improvement program for GFP in Vietnam aimed at improving economically important traits in this species. This study reports on the breeding program for fast growth employing combined (between and within) family selection in giant freshwater prawn in Vietnam. The base population was synthesized using a complete diallel cross including 9 crosses from two local stocks (DN and MK strains) and a third exotic stock (Malaysian strain - MY). In the next three selection generations, matings were conducted between genetically unrelated brood stock to produce full-sib and (paternal) half-sib families. All families were produced and reared separately until juveniles in each family were tagged as a batch using visible implant elastomer (VIE) at a body size of approximately 2 g. After tags were verified, 60 to 120 juveniles chosen randomly from each family were released into two common earthen ponds of 3,500 m2 pond for a grow-out period of 16 to 18 weeks. Selection applied at harvest on body weight was a combined (between and within) family selection approach. 81, 89, 96 and 114 families were produced for the Selection line in the F0, F1, F2 and F3 generations, respectively. In addition to the Selection line, 17 to 42 families were produced for the Control group in each generation. Results reported here are based on a data set consisting of 18,387 body and 1,730 carcass records, as well as full pedigree information collected over four generations. Variance and covariance components were estimated by restricted maximum likelihood fitting a multi-trait animal model. Experiments assessed performance of VIE tags in juvenile GFP of different size classes and individuals tagged with different numbers of tags showed that juvenile GFP at 2 g were of suitable size for VIE tags with no negative effects evident on growth or survival. Tag retention rates were above 97.8% and tag readability rates were 100% with a correct assignment rate of 95% through to mature animal size of up to 170 g. Across generations, estimates of heritability for body traits (body weight, body length, cephalothorax length, abdominal length, cephalothorax width and abdominal width) and carcass weight traits (abdominal weight, skeleton-off weight and telson-off weight) were moderate and ranged from 0.14 to 0.19 and 0.17 to 0.21, respectively. Body trait heritabilities estimated for females were significantly higher than for males whereas carcass weight trait heritabilities estimated for females and males were not significantly different (P > 0.05). Maternal and common environmental effects for body traits accounted for 4 to 5% of the total variance and were greater in females (7 to 10%) than in males (4 to 5%). Genetic correlations among body traits were generally high in both sexes. Genetic correlations between body and carcass weight traits were also high in the mixed sexes. Average selection response (% per generation) for body weight (transformed to square root) estimated as the difference between the Selection and the Control group was 7.4% calculated from least squares means (LSMs), 7.0% from estimated breeding values (EBVs) and 4.4% calculated from EBVs between two consecutive generations. Favourable correlated selection responses (estimated from LSMs) were detected for other body traits (12.1%, 14.5%, 10.4%, 15.5% and 13.3% for body length, cephalothorax length, abdominal length, cephalothorax width and abdominal width, respectively) over three selection generations. Data in the second selection generation showed positive correlated responses for carcass weight traits (8.8%, 8.6% and 8.8% for abdominal weight, skeleton-off weight and telson-off weight, respectively). Data in the third selection generation showed that heritability for body traits were moderate and ranged from 0.06 to 0.11 and 0.11 to 0.22 at weeks 10 and 18, respectively. Body trait heritabilities estimated at week 10 were not significantly lower than at week 18. Genetic correlations between body traits within age and genetic correlations for body traits between ages were generally high. Overall our results suggest that growth rate responds well to the application of family selection and carcass weight traits can also be improved in parallel, using this approach. Moreover, selection for high growth rate in GFP can be undertaken successfully before full market size has been reached. The outcome of this study was production of an improved culture strain of GFP for the Vietnamese culture industry that will be trialed in real farm production environments to confirm the genetic gains identified in the experimental stock improvement program.
Resumo:
Queensland is the only state with Jungle perch. Development and restoration of their fisheries will attract interstate anglers, creating economic benefits. Jungle perch have been successfully spawned on numerous occasions by DEEDI, but larval survival beyond day 6 has been a problem. The larval rearing problem must be overcome to progress restoration and development of the Jungle perch fishery. Key areas requiring investigation are brood stock nutrition, feeding cues and optimal larval feeds. Following successful production of fingerlings, an evaluation of the reintroduction of fingerlings at selected sites is required to determine and the guide success of the stocking program.
Resumo:
At one time Maryland produced more oysters annually than the rest of the world combined, including all species used for food. This document shows the decline in production to one sixth of the 1884 yield in 1929-1930. Observations over the course of the last decade have indicated two major factors responsible for the decline in oyster production. Reduction of brood stock stands first, while failing to provide clutch (shells) for the setting purposes has been a close second. (PDF contains 29 pages)
Resumo:
This paper discusses the investment prospects in Tilapia fry and fingerling production in raceways created from the concrete drainage channel of a reservoir or pond of an existing fish farm in Nigeria. With an initial capital of 1,300 and an annual operating cost of 310 spent on procurement of fish feed and brood stock for a 10 m super(2) raceway per se, a net profit of 4,100 and 5,090 would be realized from Sarotherodon galilaeus in the first year and subsequent years of production respectively, assuming that the fingerling production rate has been maintained through the production period. It is concluded that the application of this approach of optimizing the use of available resources in the fish farm for the productive breeding of Tilapia fry and fingerlings will apart from alleviating the problem of scarcity of stocking materials in the country, increase the profit margin accruing to the fish farmer
Resumo:
This study was conducted to identify a functioning fingerlings production and delivery system for a sustainable aquaculture development. Data were collected from 234 respondents randomly sampled from a population of 600 fish farmers. Results indicated that farmer-to-farmer was the major source of fingerlings production and distribution system. Although this source accessed disadvantaged groups like the rural based, resource poor, less educated and women, it lacked knowledge on how to produce good quality fingerlings. These results suggest that a decentralized and privatized fingerlings production and delivery system should be promoted. For this system to operate effectively the aquaculture department should first identify potential zones for aquaculture growth and profit motivated fingerlings producers and distributors. Furthermore, the institutional mechanism through which farmer-to-farmer will operate should be identified and strengthened through short and long term training programmes. The government should support the system by providing guidelines for good quality fingerlings management; maintain brood stock parents and technical training in Bangladesh.
Resumo:
In this paper we present livestock breeding developments that could be taken into consideration in the genetic improvement of farmed aquaculture species, especially in freshwater fish. Firstly, the current breeding objective in aquatic species has focused almost exclusively on the improvement of body weight at harvest or on growth related traits. This is unlikely to be sufficient to meet the future needs of the aquaculture industry. To meet future demands breeding programs will most likely have to include additional traits, such as fitness related ones (survival, disease resistance), feed efficiency, or flesh quality, rather than only growth performance. In order to select for a multi-trait breeding objective, genetic variation in traits of interest and the genetic relationships among them need to be estimated. In addition, economic values for these traits will be required. Generally, there is a paucity of data on variable and fixed production costs in aquaculture, and this could be a major constraint in the further expansion of the breeding objectives. Secondly, genetic evaluation systems using the restricted maximum likelihood method (REML) and best linear unbiased prediction (BLUP) in a framework of mixed model methodology could be widely adopted to replace the more commonly used method of mass selection based on phenotypic performance. The BLUP method increases the accuracy of selection and also allows the management of inbreeding and estimation of genetic trends. BLUP is an improvement over the classic selection index approach, which was used in the success story of the genetically improved farmed tilapia (GIFT) in the Philippines, with genetic gains from 10 to 20 per cent per generation of selection. In parallel with BLUP, optimal genetic contribution theory can be applied to maximize genetic gain while constraining inbreeding in the long run in selection programs. Thirdly, by using advanced statistical methods, genetic selection can be carried out not only at the nucleus level but also in lower tiers of the pyramid breeding structure. Large scale across population genetic evaluation through genetic connectedness using cryopreserved sperm enables the comparison and ranking of genetic merit of all animals across populations, countries or years, and thus the genetically superior brood stock can be identified and widely used and exchanged to increase the rate of genetic progress in the population as a whole. It is concluded that sound genetic programs need to be established for aquaculture species. In addition to being very effective, fully pedigreed breeding programs would also enable the exploration of possibilities of integrating molecular markers (e.g., genetic tagging using DNA fingerprinting, marker (gene) assisted selection) and reproductive technologies such as in-vitro fertilization using cryopreserved spermatozoa.
Resumo:
Common carp (Cyprinus carpio) breeding has a long tradition in Hungary. However, recent economic changes in Eastern Europe and new developments in aquaculture necessitated the need for ensuring quality of the brood stock used in hatcheries and the legal and institutional frameworks needed to implement the program. In addition to good research and development programs and gene banking, it became essential to establish an appropriate legal framework, organize, coordinate and control breeding activities, and provide financial support. It was a major breakthrough for carp breeding when C.carpio was recognized as one of the cultivated animals in the Animal Breeding Act in 1993. The Carp Breeding Section of the Hungarian Fish Producers Association plays an important role in carp breeding programs. Thirteen breeding farms of the Carp Breeding Section have 24 certified C.carpio varieties. In Hungary, about 80 % of the seed used as stocking for commercial production are from high quality certified breeders.