973 resultados para broadband optical polarisors
Resumo:
In this paper, we present the broadband optical amplification in bismuth-doped germanate glass, at the second telecommunication window when excited with 808 nm and 980 nm laser diodes, respectively. The amplification range is from 1272 nm to 1348 nm wavelength, which is within the O-band of silica fiber communication. This bismuth-doped glass can be used as ultra broadband amplification material for wavelength-division-multiplexing (WDM) at the second telecommunication window.
Resumo:
We demonstrate broadband optical amplification at 1.3 mu m in silicate glass-ceramics containing beta-Ga2O3:Ni2+ nanocrystals with 980 nm excitation for the first time. The optical gain efficiency is calculated to be about 0.283 cm(-1) when the excitation power is 1.12 W. The optical gain shows similar wavelength dependence to luminescence properties. (C) 2007 Optical Society of America.
Resumo:
Tellurite glass is proposed as a host for broadband erbium-doped fiber amplifiers because of their excellent optical and chemical properties. A new single mode Er3+/Yb3+ codoped tellurite fiber with D-shape cladding geometry is fabricated in this work. When pumped at 980 nm, a broad erbium amplified spontaneous emission (ASE) nearly 100 nm in the wavelength range of 1450-1650 ran around 1.53 mu m is observed. It was found that the emission spectrum from erbium in tellurite glass fibers is almost twice as broad as the corresponding spectrum in tellurite bulk glass. The changes in ASE with regard to fiber lengths and pumping power were measured and discussed. The output of about 2.3 mW from Er3+/Yb3+ codoped tellurite fiber ASE source is obtained under the pump power of 700 mW. The broad 1.53 mu m emission of Er3+ in Er3+/Yb3+ codoped tellurite glass fiber can be used as host material for potential broadband optical amplifier and tunable fiber lasers. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Broadband infrared luminescence is observed in various Bi-doped oxide glasses prepared by conventional melting-quenching technique. The absorption spectrum of the Bi-doped germanium oxide glass consists of five broad peaks at below 370, 500, 700, 800 and 1000 nm. The fluorescence spectrum exhibits a broad peak at about 1300 nm with full width at half maximum (FWHM) of more than 300 nm when excited by an 808 nm laser diode. The fluorescence lifetime at room temperature decreases with increasing Bi2O3 concentration. Influence of the glass composition and melting atmosphere on the fluorescence lifetime and luminescent intensity is investigated. The mechanism of the broadband infrared luminescence is suggested. The product of stimulated emission cross-section and lifetime of the Bi-doped aluminophosphate glass is about 5.0 X 10(-24) cm(2) s. The glasses might be promising for applications in broadband optical fiber amplifiers and tunable lasers. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
New broadband near infrared luminescence covering the whole work windows (1260-1625 nm) of the current wavelength division multiplexing (WDM) system was found from bismuth-activated M2O-Al2O3-SiO2 (M = Li, Na) and Li2O-Ta2O5-SiO2 glasses at room temperature in the case of 808 nm-laser excitation. But the near infrared luminescence mechanism of the bismuth-activated glasses is not well understood up to now. The figure-of-merits of bandwidth and gain of the glasses are better than those of Er3+-doped silicate glasses and Ti3+ doped sapphire, implying they are the promising gain-medium candidates for the broadband amplifiers and the widely tunable laser sources. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The broadband luminescence covering 1.2-1.6 mu m was observed from bismuth and aluminum co-doped germanium oxide glasses pumped by 808 nm laser at room temperature. The spectroscopic properties of GeO2:Bi,Al glasses strongly depend on the glass compositions and the pumping sources. To a certain extent, the Al3+ ions play as dispersing reagent for the infrared-emission centers in the GeO2:Bi,Al glasses. The broad infrared luminescence with a full width at half maximum larger than 200 nm and a lifetime longer than 200 mu s possesses these glasses with the potential applications in broadly tunable laser sources and ultra-broadband fiber amplifiers in optical communication field. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Ultra-broadband optical parametric chirped-pulse amplification is analyzed based the compensation of phase-mismatch, which is achieved by matching of both group-velocity and pulse-front between signal and idler by the combination of the noncollinear-phase-match and pulse-front-tilt. The results show exactly matching of both group-velocity and pulse-front is the important criterion for constructing an UBOPCPA. Its general model is developed, in which the group velocities, noncollinear angles. spatial walk-off angles, linear angular spectral dispersion coefficients and pulse-front tilted angles are suitably linked to each other. Finally, specific numerical calculations and simulations are presented for beta-barium borate OPCPA with type-1 noncollinear angularly dispersed geometry. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
We propose a LBO-based ultra-broadband chirped pulse optical parametric amplifier employing pulse-front-matching to yield transform-limited sub-12-fs pulses. Measurement of the maximum possible gain bandwidth for the LBO-based OPCPA demonstrates more than 60nm gain bandwidth FWHM. For the generation of TL pulses by the use of this OPCPA, a suitable combination of OPCPA and PFM is first presented. The PFM pump geometry realizes tilt-free signal amplification, and permits this OPCPA to generate TL sub-12-fs pulses.
Resumo:
A novel spectroscopic method, incoherent broadband cavity enhanced absorption spectroscopy (IBBCEAS), has been modified and extended to measure absorption spectra in the near-ultraviolet with high sensitivity. The near-ultraviolet region extends from 300 to 400 nm and is particularly important in tropospheric photochemistry; absorption of near-UV light can also be exploited for sensitive trace gas measurements of several key atmospheric constituents. In this work, several IBBCEAS instruments were developed to record reference spectra and to measure trace gas concentrations in the laboratory and field. An IBBCEAS instrument was coupled to a flow cell for measuring very weak absorption spectra between 335 and 375 nm. The instrument was validated against the literature absorption spectrum of SO2. Using the instrument, we report new absorption cross-sections of O3, acetone, 2-butanone, and 2-pentanone in this spectral region, where literature data diverge considerably owing to the extremely weak absorption. The instrument was also applied to quantifying low concentrations of the short-lived radical, BrO, in the presence of strong absorption by Br2 and O3. A different IBBCEAS system was adapted to a 4 m3 atmosphere simulation chamber to record the absorption cross-sections of several low vapour pressure compounds, which are otherwise difficult to measure. Absorption cross-sections of benzaldehyde and the more volatile alkyl nitrites agree well with previous spectra; on this basis, the cross-sections of several nitrophenols are reported for the first time. In addition, the instrument was also used to study the optical properties of secondary organic aerosol formed following the photooxidation of isoprene. An extractive IBBCEAS instrument was developed for detecting HONO and NO2 and had a sensitivity of about 10-9 cm-1. This instrument participated in a major international intercomparison of HONO and NO2 measurements held in the EUPHORE simulation chamber in Valencia, Spain, and results from that campaign are also reported here.
Resumo:
A carbon nanotube free-standing linearly dichroic polariser is developed using solid-state extrusion. Membrane cohesion is experimentally and numerically demonstrated to derive from inter-tube van der Waals interactions in this family of planar metastable morphologies, controlled by the chemical vapour deposition conditions. Ultra-broadband polarisation (400 nm – 2.5 mm) is shown and corroborated by effective medium and full numerical simulations.