856 resultados para broadband amplification
Resumo:
Broadband and upconversion properties were studied in Er3+/Yb3+ co-doped fluorophosphate glasses. Large Omega(6) and S-ed/(S-ed + S-md) values and the flat gain profile over 1530-1585 nm indicate the good broadband properties of the glass system. And a premise of using Omega(6) as a parameter to estimate the broadband properties of the glasses is proposed for the first time to our knowledge. Results showed that fluorescence intensity, upconversion luminescence intensity, the intensity ratio of red/green light (656 nm/545 nm) are closely related to the Yb3+:Er3+ ratio and Er3+ concentration, and the corresponding calculated lifetime of F-4(9/2) and S-4(3/2) states for red and green upconversion samples proves this conclusion. The upconversion mechanism is also discussed. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, we present the broadband optical amplification in bismuth-doped germanate glass, at the second telecommunication window when excited with 808 nm and 980 nm laser diodes, respectively. The amplification range is from 1272 nm to 1348 nm wavelength, which is within the O-band of silica fiber communication. This bismuth-doped glass can be used as ultra broadband amplification material for wavelength-division-multiplexing (WDM) at the second telecommunication window.
Resumo:
Transparent Ni2+-doped beta-Ga2O3 glass-ceramics were synthesized. The nanocrystal phase in the glass-ceramics was identified to be beta-Ga2O3 and its size was about 3.6 nm. It was confirmed from the absorption spectra that the ligand environment of Ni2+ ions changed from the trigonal bi-pyramid fivefold sites in the as-cast glass to the octahedral sites in the glass-ceramics. The broadband infrared emission centering at 1270 nm with full width at half maximum (FWHM) of more than 250 nm was observed. The fluorescence lifetime was about 1.1 mu s at room temperature. The observed infrared emission could be attributed to the T-3 (2g) (F-3) -> (3)A (2g) (F-3) transition of octahedral Ni2+ ions. It is suggested that the Ni2+-doped transparent beta-Ga2O3 glass-ceramics with broad bandwidth and long lifetime have a potential as a broadband amplification medium.
Resumo:
Optical parametric chirped-pulse amplification (OPCPA) supplies broadband gain for ultrashort pulses. A new theoretic explanation of OPCPA has been obtained by introducing the concept of tilted pulse front in this paper, and the distribution of broadband amplification has been twice expanded by introducing the technology of achromatic phase matching (APM). The prospect of APM in OPCPA has been discussed in detail. Finally, a design for the amplification of chirped pulses at 1600 nm has been firstly proposed and numerically simulated. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Near-degenerative near-collinear phase-match geometry for broadband optical parametric chirped-pulse amplification (OPCPA) at approximate to 780 nm is calculated in comparison with nondegenerate noncollinear phase-match geometry. In an experiment on LBO-I near-degenerate near-collinear OPCPA, high gain with broad gain bandwidth (approximate to 71 nm, FWHM) at approximate to 780 nm is achieved by using an approximate to 390-nm pumping pulse. The stretched broadband chirped signal pulse near 780 nm is amplified to approximate to 412 mu J with a pumping energy of approximate to 15 mJ, and the total gain is > 3.7 X 10(6), which agrees well with the calculation. For a broadband (covering approximate to 100 nm) chirped signal pulse, the theoretical gain bandwidth has been attained experimentally for the first time. (c) 2005 Society of Photo-Optical Instrumentation Engineers.
Resumo:
Near-degenerative near-collinear phase-match geometry for broadband optical parametric chirped-pulse amplification (OPCPA) at approximate to 780 nm is calculated in comparison with nondegenerate noncollinear phase-match geometry. In an experiment on LBO-I near-degenerate near-collinear OPCPA, high gain with broad gain bandwidth (approximate to 71 nm, FWHM) at approximate to 780 nm is achieved by using an approximate to 390-nm pumping pulse. The stretched broadband chirped signal pulse near 780 nm is amplified to approximate to 412 mu J with a pumping energy of approximate to 15 mJ, and the total gain is > 3.7 X 10(6), which agrees well with the calculation. For a broadband (covering approximate to 100 nm) chirped signal pulse, the theoretical gain bandwidth has been attained experimentally for the first time. (c) 2005 Society of Photo-Optical Instrumentation Engineers.
Resumo:
We demonstrate broadband optical amplification at 1.3 mu m in silicate glass-ceramics containing beta-Ga2O3:Ni2+ nanocrystals with 980 nm excitation for the first time. The optical gain efficiency is calculated to be about 0.283 cm(-1) when the excitation power is 1.12 W. The optical gain shows similar wavelength dependence to luminescence properties. (C) 2007 Optical Society of America.
Resumo:
Tellurite glass is proposed as a host for broadband erbium-doped fiber amplifiers because of their excellent optical and chemical properties. A new single mode Er3+/Yb3+ codoped tellurite fiber with D-shape cladding geometry is fabricated in this work. When pumped at 980 nm, a broad erbium amplified spontaneous emission (ASE) nearly 100 nm in the wavelength range of 1450-1650 ran around 1.53 mu m is observed. It was found that the emission spectrum from erbium in tellurite glass fibers is almost twice as broad as the corresponding spectrum in tellurite bulk glass. The changes in ASE with regard to fiber lengths and pumping power were measured and discussed. The output of about 2.3 mW from Er3+/Yb3+ codoped tellurite fiber ASE source is obtained under the pump power of 700 mW. The broad 1.53 mu m emission of Er3+ in Er3+/Yb3+ codoped tellurite glass fiber can be used as host material for potential broadband optical amplifier and tunable fiber lasers. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Yb-Bi codoped phosphate glass was prepared and its properties were compared with Bi-doped phosphate glass. The broadband infrared luminescence intensity from Yb-Bi codoped glass was similar to 32 times stronger than that of Bi-doped glass. The single-pass optical amplification was measured on a traditional two-wave mixing configuration. No optical amplification was observed in Bi-doped glass, while apparent broadband optical amplification between 1272 and 1336 nm was observed from Yb-Bi codoped glass with 980 nm laser diode excitation. The highest gain coefficient at 1272 nm of Yb-Bi codoped glass reached to 2.62 cm(-1). Yb-Bi codoped phosphate glass is a promising material for broadband optical amplification. (C) 2008 American Institute of Physics.
Resumo:
Broadband infrared luminescence is observed in various Bi-doped oxide glasses prepared by conventional melting-quenching technique. The absorption spectrum of the Bi-doped germanium oxide glass consists of five broad peaks at below 370, 500, 700, 800 and 1000 nm. The fluorescence spectrum exhibits a broad peak at about 1300 nm with full width at half maximum (FWHM) of more than 300 nm when excited by an 808 nm laser diode. The fluorescence lifetime at room temperature decreases with increasing Bi2O3 concentration. Influence of the glass composition and melting atmosphere on the fluorescence lifetime and luminescent intensity is investigated. The mechanism of the broadband infrared luminescence is suggested. The product of stimulated emission cross-section and lifetime of the Bi-doped aluminophosphate glass is about 5.0 X 10(-24) cm(2) s. The glasses might be promising for applications in broadband optical fiber amplifiers and tunable lasers. (c) 2007 Elsevier B.V. All rights reserved.