949 resultados para bridge
Resumo:
As a part of vital infrastructure and transportation networks, bridge structures must function safely at all times. However, due to heavier and faster moving vehicular loads and function adjustment, such as Busway accommodation, many bridges are now operating at an overload beyond their design capacity. Additionally, the huge renovation and replacement costs always make the infrastructure owners difficult to undertake. Structural health monitoring (SHM) is set to assess condition and foresee probable failures of designated bridge(s), so as to monitor the structural health of the bridges. The SHM systems proposed recently are incorporated with Vibration-Based Damage Detection (VBDD) techniques, Statistical Methods and Signal processing techniques and have been regarded as efficient and economical ways to solve the problem. The recent development in damage detection and condition assessment techniques based on VBDD and statistical methods are reviewed. The VBDD methods based on changes in natural frequencies, curvature/strain modes, modal strain energy (MSE) dynamic flexibility, artificial neural networks (ANN) before and after damage and other signal processing methods like Wavelet techniques and empirical mode decomposition (EMD) / Hilbert spectrum methods are discussed here.
Resumo:
This paper uses dynamic computer simulation techniques to apply a procedure using vibration-based methods for damage assessment in multiple-girder composite bridge. In addition to changes in natural frequencies, this multi-criteria procedure incorporates two methods, namely the modal flexibility and the modal strain energy method. Using the numerically simulated modal data obtained through finite element analysis software, algorithms based on modal flexibility and modal strain energy change before and after damage are obtained and used as the indices for the assessment of structural health state. The feasibility and capability of the approach is demonstrated through numerical studies of proposed structure with six damage scenarios. It is concluded that the modal strain energy method is competent for application on multiple-girder composite bridge, as evidenced through the example treated in this paper.
Resumo:
The report presents a methodology for whole of life cycle cost analysis of alternative treatment options for bridge structures, which require rehabilitation. The methodology has been developed after a review of current methods and establishing that a life cycle analysis based on a probabilistic risk approach has many advantages including the essential ability to consider variability of input parameters. The input parameters for the analysis are identified as initial cost, maintenance, monitoring and repair cost, user cost and failure cost. The methodology utilizes the advanced simulation technique of Monte Carlo simulation to combine a number of probability distributions to establish the distribution of whole of life cycle cost. In performing the simulation, the need for a powerful software package, which would work with spreadsheet program, has been identified. After exploring several products on the market, @RISK software has been selected for the simulation. In conclusion, the report presents a typical decision making scenario considering two alternative treatment options.
Resumo:
A worldwide interest is being generated in the use of fibre reinforced polymer composites (FRP) in rehabilitation of reinforced concrete structures. As a replacement for the traditional steel plates or external post-tensioning in strengthening applications, various types of FRP plates, with their high strength to weight ratio and good resistance to corrosion, represent a class of ideal material in external retrofitting. Within the last ten years, many design guidelines have been published to provide guidance for the selection, design and installation of FRP systems for external strengthening of concrete structures. Use of these guidelines requires understanding of a number of issues pertaining to different properties and structural failure modes specific to these materials. A research initiative funded by the CRC for Construction Innovation was undertaken (primarily at RMIT) to develop a decision support tool and a user friendly guide for use of fibre reinforced polymer composites in rehabilitation of concrete structures. The user guidelines presented in this report were developed after industry consultation and a comprehensive review of the state of the art technology. The scope of the guide was mainly developed based on outcomes of two workshops with Queensland Department of Main Roads (QDMR). The document covers material properties, recommended construction requirements, design philosophy, flexural, shear and torsional strengthening of beams and strengthening of columns. In developing this document, the guidelines published on FIB Bulletin 14 (2002), Task group 9.3, International Federation of Structural Concrete (FIB) and American Concrete Institute Committee 440 report (2002) were consulted in conjunction with provisions of the Austroads Bridge design code (1992) and Australian Concrete Structures code AS3600 (2002). In conclusion, the user guide presents design examples covering typical strengthening scenarios.
Resumo:
A trip was undertaken to look at concerns of Public Works and Main Roads Departments of Queensland. David Paterson and Wayne Ganther from CSIRO travelled to the Sunshine Coast with Alan Carse of Queensland Department of Main Roads and Michael Ball of Queensland Department of Public Works. We were also joined for part of the visits by Ed Bowers of QBuild which is a commercial unit of Public Works responsible for maintenance of Public Works. During the trip we visited a bridge on the David Low Way at Sunrise Beach near Noosa. This bridge was in a serve marine environment with high salt content in the concrete and corrosion of the galvanised guardrails and barriers. Also the foreshore at Coolum was visited and the use of stainless steel was examined. This is discussed in this report. Most problems stemmed from incorrect specification due to lack of awareness of the severity of the environment. The companion report Visit to Schools Report 2002-059-B No 7. covers the visit to four schools north of Caloundra.
Resumo:
Maintenance of bridge structures is a major issue for the Queensland Department of Main Roads. In the previous phase of this CRC project an initial approach was made towards the development of a program for lifetime prediction of metallic bridge components. This involved the analysis of five representative bridge structures with respect to salt deposition (a major contributor to metallic corrosion) to determine common elements to be used as “cases” - those defined for buildings are not applicable. The five bridges analysed included the Gladstone Port Access Road Overpass, Stewart Road Overpass, South Johnstone River Bridge, Johnson Creek Bridge and the Ward River Bridge.
Resumo:
n design of bridge structures, it is common to adopt a 100 year design life. However, analysis of a number of case study bridges in Australia has indicated that the actual design life can be significantly reduced due to premature deterioration resulting from exposure to aggressive environments. A closer analysis of the cost of rehabilitation of these structures has raised some interesting questions. What would be the real service life of a bridge exposed to certain aggressive environments? What is the strategy of conducting bridge rehabilitation? And what are the life cycle costs associated with rehabilitation? A research project funded by the CRC for Construction Innovation in Australia is aimed at addressing these issues. This paper presents a concept map for assisting decision makers to appropriately choose the best treatment for bridge rehabilitation affected by premature deterioration through exposure to aggressive environments in Australia. The decision analysis is referred to a whole of life cycle cost analysis by considering appropriate elements of bridge rehabilitation costs. In addition, the results of bridges inspections in Queensland are presented
Resumo:
Building Information Model (BIM) software, collaboration platforms and 5D Construction Management software is now commercially available and presents the opportunity for construction project teams to design more cost effectively, plan construction earlier, manage costs throughout the life cycle of a building project and provide a central asset management register for facilities managers. This paper outlines the merits of taking a holistic view of ICT in curriculum design. The educational barriers to implementation of these models and planning tools are highlighted. Careful choice of computer software can make a significant difference to how quickly students can master skills; how easy it is to study and how much they enjoy learning and be prepared for employment. An argument for BIM and 5D planning tools to be introduced into the curriculum to assist industry increase productivity and efficiencies are outlined by the authors.
Resumo:
This paper compares and reviews the recommendations and contents of the guide for the design and construction of externally bonded FRP systems for strengthening concrete structures reported by ACI committee 440 and technical report of Externally bonded FRP reinforcement for RC structures (FIB 14) in application of carbon fiber reinforced polymer (CFRP) composites in strengthening of an aging reinforced concrete headstock. The paper also discusses the background, limitations, strengthening for flexure and shear, and other related issues in use of FRP for strengthening of a typical reinforced concrete headstock structure such as durability, de-bonding, strengthening limits, fire and environmental conditions. A case study of strengthening of a bridge headstock using FRP composites is presented as a worked example in order to illustrate and compare the differences between these two design guidelines when used in conjunction with the philosophy of the Austroads (1992) bridge design code.
Resumo:
This paper compares and reviews the recommendations and contents of the guide for the design and construction of externally bonded FRP systems for strengthening concrete structures reported by ACI committee 440 and technical report of Externally bonded FRP reinforcement for RC structures (FIB 14) in application of carbon fiber reinforced polymer (CFRP) composites in strengthening of an aging reinforced concrete headstock. The paper also discusses the background, limitations, strengthening for flexure and shear, and other related issues in use of FRP for strengthening of a typical reinforced concrete headstock structure such as durability, de-bonding, strengthening limits, fire and environmental conditions. A case study of strengthening of a bridge headstock using FRP composites is presented as a worked example in order to illustrate and compare the differences between these two design guidelines when used in conjunction with the philosophy of the Austroads (1992) bridge design code.
Resumo:
Abstract: Purpose – Several major infrastructure projects in the Hong Kong Special Administrative Region (HKSAR) have been delivered by the build-operate-transfer (BOT) model since the 1960s. Although the benefits of using BOT have been reported abundantly in the contemporary literature, some BOT projects were less successful than the others. This paper aims to find out why this is so and to explore whether BOT is the best financing model to procure major infrastructure projects. Design/methodology/approach – The benefits of BOT will first be reviewed. Some completed BOT projects in Hong Kong will be examined to ascertain how far the perceived benefits of BOT have been materialized in these projects. A highly profiled project, the Hong Kong-Zhuhai-Macau Bridge, which has long been promoted by the governments of the People's Republic of China, Macau Special Administrative Region and the HKSAR that BOT is the preferred financing model, but suddenly reverted back to the traditional financing model to be funded primarily by the three governments with public money instead, will be studied to explore the true value of the BOT financial model. Findings – Six main reasons for this radical change are derived from the analysis: shorter take-off time for the project; difference in legal systems causing difficulties in drafting BOT agreements; more government control on tolls; private sector uninterested due to unattractive economic package; avoid allegation of collusion between business and the governments; and a comfortable financial reserve possessed by the host governments. Originality/value – The findings from this paper are believed to provide a better understanding to the real benefits of BOT and the governments' main decision criteria in delivering major infrastructure projects.
Resumo:
The Sydney Harbour Bridge provides an imaginative space that is revisited by Australian writers in particular ways. In this space novelists, poets, and cultural historians negotiate questions of emotional and psychological transformation as well as reflect on social and environmental change in the city of Sydney. The writerly tensions that mark these accounts often alter, or query, representations of the Bridge as a symbol of material progress and demonstrate a complex creative engagement with the Bridge. This discussion of ‘the Bridge’ focuses on the work of four authors, Eleanor Dark, P.R. Stephensen, Peter Carey and Vicki Hastrich and includes a range of other fictional and non-fictional accounts of ‘Bridge-writing.’ The ideas proffered are framed by a theorising of space, especially referencing the work of Michel de Certeau, whose writing on the spatial ambiguity of a bridge is important to the examination of the diverse ways in which Australian writers have engaged with the imaginative potential and almost mythic resonance of the Sydney Harbour Bridge.