891 resultados para breast carcinogenesis
Resumo:
Objective.-to examine the c-erb B-2 expression and nuclear DNA content in samples of breast lesions to ascertain any relationship between c-erb B-2 expression and aneuploidy in the different types of proliferative breast lesions and in intraductal and invasive carcinomas.Design and Setting.-lmmunohistochemical analysis of c-erb B-2 expression and cytometric nuclear DNA assessment were performed in a series of 39 cases of intraductal hyperplasia without atypia, 7 cases of intraductal hyperplasia with atypia, 64 cases of intraductal carcinoma, and 85 cases of invasive breast carcinoma (30 of which had extensive intraductal component).Results.-Overexpression of c-erb B-2 was seen only in cases of carcinoma: 28 (43.7%) intraductal carcinomas and 15 (17.6%) invasive carcinomas. Aneuploidy was demonstrated in 3 (43.0%) cases of intraductal hyperplasia with atypia, in 54 (84.4%) cases of intraductal carcinoma, and in 63 (74.2%) cases of invasive carcinoma. All cases of intraductal hyperplasia without atypia were euploid and none expressed c-erb B-2. Among the carcinomas (intraductal and invasive) there was a strong relationship between aneuploidy and c-erb B-2 expression. In most instances, the intraductal and invasive components of the 30 invasive carcinomas with extensive intraductal component displayed similar DNA content and c-erb B-2 immunoreactivity; whenever there was a difference, the intraductal component tended to be aneuploid (five out of six cases) and c-erb B-2 positive (one case), in contrast to the respective invasive component.Conclusions.-The higher frequency of aneuploidy and c-erb B-2 expression in intraductal carcinomas in comparison with invasive carcinomas suggests there is not a linear relationship between DNA content abnormalities and neoplastic progression and that some invasive breast carcinomas evolve without an identifiable intraductal phase or are unrelated to disturbances at the c-erb B-2 locus.
Simple mucin-type carbohydrate antigens (T, sialosyl T, Tn and sialosyl-Tn) in breast carcinogenesis
Resumo:
Immunohistochemical analysis of the expression of simple mucin-type carbohydrate antigens (Tn, sialyl-Tn and T) was performed in a series of 43 cases of intraductal hyperplasia without atypia, 9 cases of intraductal hyperplasia with atypia, 54 cases of ductal carcinoma in situ (DCIS) and 26 cases of invasive breast carcinoma. We also studied 36 cases of isolated breast normal epithelium, 20 cases of 'normal' breast epithelium adjacent to neoplasms and 14 cases of apocrine metaplasia. All antigens were detected in different frequencies in normal, hyperplastic, metaplastic and neoplastic breast epithelium. Tn and sialyl-Tn are expressed more frequently in malignant than in benign breast epithelium; while Tn expression increases from normal to invasive carcinomas, sialyl-Tn increases until DCIS and drops in invasive carcinomas, suggesting that either there is a failure of a proportion of DCIS to progress to invasive carcinoma or loss of expression of sialyl-Tn when some carcinomas become invasive. The high frequency of Tn and sialyl-Tn expression in breast intraductal proliferations probably reflects incomplete glycosylation in these lesions, which is a well-known tumour-associated phenomenon and supports the assumption that such lesions are putative precursors of breast cancer. T antigen was expressed in all groups studied, but its prevalence differed significantly between normal and neoplastic epithelium. The expression of these antigens in epithelium adjacent to carcinomas is similar to that found in isolated normal breast epithelium, whereas apocrine metaplasia has a pattern of simple mucin-type glycosylation that is specific and distinct from that of the normal breast epithelium, with a high frequency of marked expression of Tn and sialyl-Tn. The similarity of the pattern of expression of simple mucin-type antigens in metaplasia and malignant neoplasia reduces the usefulness of these markers from a diagnostic standpoint.
Resumo:
TRPV6 is an endothelial calcium entry channel that is strongly expressed in breast adenocarcinoma tissue. In this study, we further confirmed this observation by analysis of breast cancer tissues, which indicated that TRPV6 mRNA expression was up-regulated between 2-fold and 15-fold compared with the average in normal breast tissue. Whereas TRPV6 is expressed in the cancer tissue, its role as a calcium channel in breast carcinogenesis is poorly understood. Therefore, we investigated how TRPV6 affects the viability, apoptosis, and calcium transport in the breast cancer cell line T47D. Hormones can also affect the tumor development; hence, we determined the effects of estradiol, progesterone, and 1,25-vitamin D on TRPV6 transcription. Interestingly, the estrogen receptor antagonist tamoxifen reduced expression of TRPV6 and is able to inhibit its calcium transport activity (IC(50), 7.5 micromol/L). The in vitro model showed that TRPV6 can be regulated by estrogen, progesterone, tamoxifen, and 1,25-vitamin D and has a large influence on breast cancer cell proliferation. Moreover, the effect of tamoxifen on cell viability was enhanced when TRPV6 expression was silenced with small interfering RNA. TRPV6 may be a novel target for the development of calcium channel inhibitors to treat breast adenocarcinoma expressing TRPV6.
Resumo:
While conducting a search for cell cycle-regulated genes in human mammary carcinoma cells, we identified HSIX1, a recently discovered member of a new homeobox gene subfamily. HSIX1 expression was absent at the onset of and increased toward the end of S phase. Since its expression pattern is suggestive of a role after S phase, we investigated the effect of HSIX1 in the G2 cell cycle checkpoint. Overexpression of HSIX1 in MCF7 cells abrogated the G2 cell cycle checkpoint in response to x-ray irradiation. HSIX1 expression was absent or very low in normal mammary tissue, but was high in 44% of primary breast cancers and 90% of metastatic lesions. In addition, HSIX1 was expressed in a variety of cancer cell lines, suggesting an important function in multiple tumor types. These data support the role for homeobox genes in tumorigenesis/tumor progression, possibly through a cell cycle function.
Resumo:
A woman's risk of breast cancer is strongly affected by her reproductive history. The hormonal milieu is also a key determinant of the course of the disease. Combining mouse genetics with tissue recombination techniques, we have established that the female reproductive hormones, estrogens, progesterone, and prolactin, act sequentially on the mammary epithelium to trigger distinct developmental steps. The hormones impinge directly on a subset of luminal mammary epithelial cells that express the respective hormone receptors and act as sensor cells translating and amplifying systemic signals into local stimuli. Local signaling is stage and age specific. During puberty, estrogens promote proliferation using the EGF family member, amphiregulin, as essential paracrine mediator. In adulthood, progesterone, rather than estrogen, is the major inducer of stem cell activation and cell proliferation of the mammary epithelium. Hormonal signaling modulates crucial developmental pathways that impinge on mammary stem cell populations, while Notch signaling, by inhibiting p63, is central to mammary cell fate determination. Cell proliferation occurs in two waves. The first results from direct stimulation of the small fraction of hormone receptor positive cells. It is followed by a second wave of progesterone-induced proliferation involving mostly hormone receptor negative cells, in which RANKL is a key mediator. A model in which repeated activation of paracrine signaling by progesterone with resulting stem cell activation promotes breast carcinogenesis is proposed.
Resumo:
Aims: Fos-related antigen 1 (Fra-1) is a member of the activator protein 1 (AP-1) transcription factor family. Our objective was to evaluate the role of Fra-1 expression in breast carcinoma progression and prognosis. Methods and results: Fra-1 expression was investigated by immunohistochemistry in two tissue microarrays containing, respectively, 85 ductal carcinoma in situ (DCIS) and 771 invasive ductal carcinoma (IDC) samples. Staining was observed in the nucleus and cytoplasm of the carcinomas, but only nuclear staining was considered to be positive. Fibroblasts associated with IDC were also Fra-1-positive. The frequency of Fra-1 positivity in IDC (22.8%) was lower than that in DCIS (42.2%). No association was found between Fra-1 and clinico-pathological variables in DCIS. In IDC, Fra-1 expression correlated with aggressive phenotype markers, including: high grade, oestrogen receptor negativity and human epidermal growth factor receptor 2 (HER-2) positivity (P = 0.001, 0.015 and 0.004, respectively), and marginally with the presence of metastasis (P = 0.07). Fra-1 was more frequently positive in basal-like (34%) and in HER-2-positive (38.5%) subtypes than in luminal subtypes. Fra-1 presence did not correlate with survival. Conclusions: A high frequency of Fra-1 in DCIS tumours may be associated with early events in breast carcinogenesis. Although Fra-1 expression correlated with features of a more aggressive phenotype in IDC, no relationship with overall survival was found.
Resumo:
Patients with Gilbert Syndrome have an impaired function of the enzyme UGT1A1, responsible for the degradation of 4-OH-estrogens. These elements are produced by the degradation of estrogens and are well-known carcinogens. In theory, patients with Gilbert Syndrome accumulate 4-OH-estrogens and, therefore, might have a higher risk for breast cancer, especially when exposed to higher levels of estrogens. If this theory is true, a new risk group for breast cancer would be described, producing new insights in breast carcinogenesis. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Breast cancer is the second most frequent type of cancer worldwide and is the most common malignant disease among women. Risk factors for breast cancer include early menarche, late menopause, hormonal therapies, exposure to environmental pollutants, smoking and alcohol use. However, increased or prolonged exposure to estrogen is the most important risk factor. It has been suggested that accumulation of DNA damage may contribute to breast carcinogenesis. Epidemiological studies suggest that cytogenetic biomarkers such as micronuclei in peripheral blood lymphocytes may predict cancer risk because they indicate genomic instability in target tissues. The objective of the present study was to evaluate the frequencies of micronuclei and the extent of DNA damage detected by comet assay in peripheral blood lymphocytes of untreated breast cancer patients and healthy women. The study was conducted using peripheral blood lymphocytes from 45 women diagnosed for Ductal ""in situ"" or invasive breast carcinoma and 85 healthy control women. Micronuclei and comet assays were performed to detect spontaneous DNA damage. The results showed that micronuclei frequencies and tail intensity, detected by comet assay, were significantly higher in the breast cancer group than in controls. The levels of DNA damage were similar in smokers and non-smokers, and aging did not influence the frequencies of micronuclei or tail intensity values observed in either group. In conclusion, the present work demonstrates higher levels of DNA damage in untreated breast cancer patients than in healthy women.
Resumo:
Breast cancer is the most common malignancy in women and a significant cause of morbidity and mortality. Sub-types of breast cancer defined by the expression of steroid hormones and Her2/Neu oncogene have distinct prognosis and undergo different therapies. Besides differing in their phenotype, sub-types of breast cancer display various molecular lesions that participate in their pathogenesis. BRCA1 is one of the common hereditary cancer predisposition genes and encodes for an ubiquitin ligase. Ubiquitin ligases or E3 enzymes participate together with ubiquitin activating enzyme and ubiquitin conjugating enzymes in the attachment of ubiquitin (ubiquitination) in target proteins. Ubiquitination is a post-translational modification regulating multiple cell functions. It also plays important roles in carcinogenesis in general and in breast carcinogenesis in particular. Ubiquitin conjugating enzymes are a central component of the ubiquitination machinery and are often perturbed in breast cancer. This paper will discuss ubiquitin and ubiquitin-like proteins conjugating enzymes participating in breast cancer pathogenesis, their relationships with other proteins of the ubiquitination machinery and their role in phenotype of breast cancer sub-types.
Resumo:
Résumé L'influence des hormones reproductives sur le développement du cancer du sein a été établie au travers de nombreuse études épidémiologiques. Nous avons précédemment démontré que le gène Wnt-4 est un médiateur essentiel de la progestérone dans le développement lobulo-alvéolaire de l'épithélium mammaire. De plus, le rôle de la voie de signalisation Wnt dans la tumorigénèse de la glande mammaire mutine est largement établi. Pour comprendre sa fonction dans le cancer du sein, nous avons activée cette voie en surexprimant le gène Wnt-1 dans des cellules épithéliales primaires de sein, au moyen d'un rétrovirus. Ceci a conduit à la transformation oncogénique de ces cellules et à l'obtention d'un modèle de carcinogénèse du sein dénommé Wnt-1 HMEC. L'analyse de l'expression des gènes induits par la surexpression de Wnt-1 dans ces cellules, a permis d'identifier les gènes BMP4 et 7. Alors que des analyses de RT-PCR ont montré leur forte expression dans les cellules Wnt-1-HMECs, la présence d'une grande quantité de la protéine BMP7 a été constatée dans les tumeurs dérivées de ces cellules. L'importante phosphorylation des Smad 1, 5, S dans les Wnt-1 HMECs indique l'activation de la voie BMP, possiblement due à la stimulation ce celle-ci par BMP7. L'activation de la voie Wnt par la ß-Caténine, conduit à la transcription de BMP7, identifiant ainsi ce gène comme un gène cible de la voie canonique. La pertinence de nos observations a par ailleurs été confirmée par le fait que BMP7 est surexprimé dans les tumeurs de seins humains. Afin d'élucider la fonction de la voie BMP dans le sein, nous avons utilisé le modèle mutin. L'expression du gène BMP7 dans les souris transgéniques MMTV Wnt-1 s'est avérée élevée, démontrant qu'il est aussi un gène cible de la voie Wnt in-vivo. L'expression de l'ARN messager .codant pour la protéine BMP7 est induite lors du développement lobulo-alvéolaire, qui se fait sous l'influence de la progestérone et de Wnt-4. Ensemble, ces observations corroborent le fait qu'une stimulation avec de la progestérone suffit à induire la transcription du gène dans les 24h. Nos résultats coïncident d'autre part avec le fait que BMP7 est exprimé dans la couche myoépithéliale de l'épithélium où la voie Wnt est activée. L'analyse de souris reportrices de l'activité de la voie BMP, suggère une activation dans la couche luminale de l'épithélium durant tout le développement de la glande mammaire. Curieusement, cette même voie est active dans le mésenchyme lors de la mammogénèse embryonnaire. Finalement, nos analyses d'immunofluorescence démontrent la capacité de prolifération des cellules ayant activé BMP, ainsi que leur nette ségrégation d'avec les cellules exprimant le récepteur à la progestérone. Nos résultats démontrent que le gène BMP7 est un gène cible de la voie Wnt canonique dans le sein. Son expression dans la couche myoépitheliale est induite par Wnt-4, lui-même sécrété par les cellules luminales sensibles à la progestérone. La sécrétion de la protéine BMP7 conduit finalement à l'activation de la voie BMP dans les cellules négatives pour le récepteur à la progestérone. Abstract Epidemiological studies highlight the repetitive exposure to circulating progesterone as a major risk in the development of breast cancer. Work in our laboratory showed that Wnt-4 is an essential mediator of progesterone-driven side-branch formation, while Wnt signaling has long been established as strongly oncogenic in the mouse mammary gland. To address the role of Wnt in breast tumorigenesis we activated the pathway in primary human breast epithelial cells by means of refroviral Wnt-1 expression. This resulted in a Wnt1-induced breast carcinogenesis model, being referred to as Wnt-1-HMECs. Gene expression profiling revealed the Bone Morphogenetic Protein 4 and 7 (BMP4 and 7) a mong the most upregulated gene by ectopic Wnt-1 expression in primary HMECs. RT-PCR analysis confirmed elevated BMP4 and 7 mRNA levels in Wnt-1-infected HMECs, as well as strong BMP7 expression in the tumors derived from these cells. Smad 1, 5, 8 phosphorylation was high in Wnt-1HMECs whereas below detection limit in primary HMECs suggesting that the increased expression of BMP-7 results in activation of downstream signaling. Ectopic expressíon of a stabilized form of ßcatenin in primary HMECs resulted in increased transcription of BMP-7 suggesting that it is a target of canonical Wnt signaling. The clinical relevance of our observations was confirmed by the finding of BMP7 being upregulated in human breast tumor samples. To elucidate the role of BMP ligands in the breast in-vivo, we made use of the mouse model. Expression of the BMP7 gene was found to be increased in MMTV-Wnt-1 transgenic animals, suggesting that BMP7 may also be a Wnt 1 target gene in vivo. Expression of BMP7 was upregulated in mid-pregnancy which coincides with progesterone/Wnt induced side branching. BMP7 was induced within 24 hours by progesterone. Consistent with it being a target of canonical Wnt signaling, we demonstrated preferential expression of this ligand in the myoepithelial cells, the target cells of Wnt signals. In-vivo analysis of BMP signaling using a reporter mouse revealed the activation of the pathway in the luminal layer of the epithelium throughout postnatal development. Interestingly, during embryonic mammogenesis the pathway was found to be active in the mesenchyme. Immunofluorescence studies demonstrated that cells with BMP activity can proliferate. They also revealed a clear segregation between progesterone receptor positive cells and cells with active BMP signaling. Together our observations suggest that BMP-7 is a canonical Wnt signaling target both in HMECs and in the mouse mammary gland in-vivo. It is expressed in the myoepithelium possibly in response to Wnt-4, which is secreted by steroid receptor positive cells in response to progesterone. BMP-7 in turn may impinge on lumina) epithelial cells and activate BMP signaling in PR negative cells.
Resumo:
Seventy-five percent of breast cancers are estrogen receptor α positive (ER(+)). Research on these tumors is hampered by lack of adequate in vivo models; cell line xenografts require non-physiological hormone supplements, and patient-derived xenografts (PDXs) are hard to establish. We show that the traditional grafting of ER(+) tumor cells into mammary fat pads induces TGFβ/SLUG signaling and basal differentiation when they require low SLUG levels to grow in vivo. Grafting into the milk ducts suppresses SLUG; ER(+) tumor cells develop, like their clinical counterparts, in the presence of physiological hormone levels. Intraductal ER(+) PDXs are retransplantable, predictive, and appear genomically stable. The model provides opportunities for translational research and the study of physiologically relevant hormone action in breast carcinogenesis.
Resumo:
Protein tyrosine phosphatase non-receptor type 12 (PTPN12) is a recently identified tumor suppressor gene (TSG) that is frequently compromised in human triple-negative breast cancer. In the present study, we investigated the expression of PTPN12 protein by patients with breast cancer in a Chinese population and the relationship between PTPN12 expression levels and patient clinicopathological features and prognosis. Additionally, we explored the underlying down-regulation mechanism from the perspective of an epigenetic alteration. We examined PTPN12 mRNA expression in five breast cancer cell lines using semi-quantitative reverse-transcription PCR, and detected PTPN12 protein expression using immunohistochemistry in 150 primary invasive breast cancer cases and paired adjacent non-tumor tissues. Methylation-specific PCR was performed to analyze the promoter CpG island methylation status of PTPN12. PTPN12 was significantly down-regulated in breast cancer cases (48/150) compared to adjacent noncancerous tissues (17/150; P < 0.05). Furthermore, low expression of PTPN12 showed a significant positive correlation with tumor size (P = 0.047), lymph node metastasis (P = 0.001), distant metastasis (P = 0.009), histological grade (P = 0.012), and survival time (P = 0.019). Additionally, promoter CpG island hypermethylation occurs more frequently in breast cancer cases and breast cancer cell lines with low PTPN12 expression. Our findings suggest that PTPN12 is potentially a methylation-silenced TSG for breast cancer that may play an important role in breast carcinogenesis and could potentially serve as an independent prognostic factor for invasive breast cancer patients.
Resumo:
Although risk factors are known to include the loss of function of the susceptibility genes BRCA1/BRCA2 and lifetime exposure to oestrogen, the main causative agents in breast cancer remain unaccounted for. It has been suggested recently that underarm cosmetics might be a cause of breast cancer, because these cosmetics contain a variety of chemicals that are applied frequently to an area directly adjacent to the breast. The strongest supporting evidence comes from unexplained clinical observations showing a disproportionately high incidence of breast cancer in the upper outer quadrant of the breast, just the local area to which these cosmetics are applied. A biological basis for breast carcinogenesis could result from the ability of the various constituent chemicals to bind to DNA and to promote growth of the damaged cells. Multidisciplinary research is now needed to study the effect of long-term use of the constituent chemicals of underarm cosmetics, because if there proves to be any link between these cosmetics and breast cancer then there might be options for the prevention of breast cancer. Copyright D 2003 John Wiley Sons, Ltd.
Resumo:
Parabens (alkyl esters of p-hydroxybenzoic acid) are used extensively as preservatives in consumer products, and intact esters have been measured in several human tissues. Concerns of a potential link between parabens and breast cancer have been raised, but mechanistic studies have centred on their oestrogenic activity and little attention has been paid to any carcinogenic properties. In the present study, we report that parabens can induce anchorage-independent growth of MCF-10A immortalized but non-transformed human breast epithelial cells, a property closely related to transformation and a predictor of tumour growth in vivo. In semi-solid methocel suspension culture, MCF-10A cells produced very few colonies and only of a small size but the addition of 5 × 10-4 M methylparaben, 10–5 M n-propylparaben or 10–5 M n-butylparaben resulted in a greater number of colonies per dish (P < 0.05 in each case) and an increased average colony size (P < 0.001 in each case). Dose-responses showed that concentrations as low as 10–6 M methylparaben, 10–7 M n-propylparaben and 10–7 M n-butylparaben could increase colony numbers (P = 0.016, P = 0.010, P = 0.008, respectively): comparison with a recent measurement of paraben concentrations in human breast tissue samples from 40 mastectomies (Barr et al., 2012) showed that 22/40 of the patients had at least one of the parabens at the site of the primary tumour at or above these concentrations. To our knowledge, this is the first study to report that parabens can induce a transformed phenotype in human breast epithelial cells in vitro, and further investigation is now justified into a potential link between parabens and breast carcinogenesis.