1000 resultados para brain reward


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstinence from chronic administration of various drugs of abuse such as ethanol, opiates, and psychostimulants results in withdrawal syndromes largely unique to each drug class. However, one symptom that appears common to these withdrawal syndromes in humans is a negative affective/motivational state. Prior work in rodents has shown that elevations in intracranial self-stimulation (ICSS) reward thresholds provide a quantitative index that serves as a model for the negative affective state during withdrawal from psychostimulants and opiates. The current study sought to determine whether ICSS threshold elevations also accompany abstinence from chronic ethanol exposure sufficient to induce physical dependence. Rats prepared with stimulating electrodes in the lateral hypothalamus were trained in a discrete-trial current-intensity ICSS threshold procedure; subsequently they were subjected to chronic ethanol administration in ethanol vapor chambers (average blood alcohol level of 197 mg/dl). A time-dependent elevation in ICSS thresholds was observed following removal from the ethanol, but not the control, chambers. Thresholds were significantly elevated for 48 hr after cessation of ethanol exposure, with peak elevations observed at 6-8 hr. Blood alcohol levels were directly correlated with the magnitude of peak threshold elevation. Ratings of traditional overt signs of withdrawal showed a similar time course of expression and resolution. The results suggest that decreased function of reward systems (elevations in reward thresholds) is a common element of withdrawal from chronic administration of several diverse classes of abused drugs.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The endocannabinoid system (ECS) has been implicated in many physiological functions, including the regulation of appetite, food intake and energy balance, a crucial involvement in brain reward systems and a role in psychophysiological homeostasis (anxiety and stress responses). We first introduce this important regulatory system and chronicle what is known concerning the signal transduction pathways activated upon the binding of endogenous cannabinoid ligands to the Gi/0-coupled CB1 cannabinoid receptor, as well as its interactions with other hormones and neuromodulators which can modify endocannabinoid signaling in the brain. Anorexia nervosa (AN) and bulimia nervosa (BN) are severe and disabling psychiatric disorders, characterized by profound eating and weight alterations and body image disturbances. Since endocannabinoids modulate eating behavior, it is plausible that endocannabinoid genes may contribute to the biological vulnerability to these diseases. We present and discuss data suggesting an impaired endocannabinoid signaling in these eating disorders, including association of endocannabinoid components gene polymorphisms and altered CB1-receptor expression in AN and BN. Then we discuss recent findings that may provide new avenues for the identification of therapeutic strategies based on the endocannabinod system. In relation with its implications as a reward-related system, the endocannabinoid system is not only a target for cannabis but it also shows interactions with other drugs of abuse. On the other hand, there may be also a possibility to point to the ECS as a potential target for treatment of drug-abuse and addiction. Within this framework we will focus on enzymatic machinery involved in endocannabinoid inactivation (notably fatty acid amide hydrolase or FAAH) as a particularly interesting potential target. Since a deregulated endocannabinoid system may be also related to depression, anxiety and pain symptomatology accompanying drug-withdrawal states, this is an area of relevance to also explore adjuvant treatments for improving these adverse emotional reactions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Pathological gambling, a form of behavioral addiction, refers to maladaptive, compulsive gambling behavior severely interfering with an individual’s normal life. The prevalence of pathological gambling has been estimated to be 1–2% in western societies. The reward deficiency hypothesis of addiction assumes that individuals that have, or are prone, to addictions have blunted mesolimbic dopamine reward signaling, which leads to compulsive reward seeking in an attempt to compensate for the malfunctioning brain reward network. In this research project, the effects of gambling were measured using brain [11C] raclopride PET during slot machine gambling and possible brain structural changes associated with pathological gambling using MRI. The subjects included pathological gamblers and healthy volunteers. In addition, impulse control disorders associated with Parkinson’s disease were investigated by using brain [18F]fluorodopa PET and conducting an epidemiological survey. The results demonstrate mesolimbic dopamine release during gambling in both pathological gamblers and healthy volunteers. Striatal dopamine was released irrespective of the gambling outcome, whether the subjects won or not. There was no difference in gambling induced dopamine release between pathological gamblers and control subjects, although the magnitude of the dopamine release correlated with gambling related symptom severity in pathological gamblers. The results also show that pathological gambling is associated with extensive abnormality of brain white matter integrity, as measured with diffusion tensor imaging, similar to substance-addictions. In Parkinson’s disease patients with impulse control disorders, enhanced brain [18F] fluorodopa uptake in the medial orbitofrontal cortex was observed, indicating increased presynaptic monoamine function in this region, which is known to influence signaling in the mesolimbic system and reward processing. Finally, a large epidemiological survey in Finnish Parkinson’s disease patients showed that compulsive behaviors are very common in Parkinson disease and they are strongly associated with depression. These findings demonstrate the role of dopamine in pathological gambling, without support for the concept of reward deficiency syndrome.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

OBJECTIVE: Craving for alcohol is probably involved in acquisition and maintenance of alcohol dependence to a substantial degree. However, the brain substrates and mechanisms that underlie alcohol craving await more detailed elucidation. METHOD: Positron emission tomography was used to map regional cerebral blood flow (CBF) in 21 detoxified patients with alcohol dependence during exposure to alcoholic and non-alcoholic beverages. RESULTS: During the alcohol condition compared with the control condition, significantly increased CBF was found in the ventral putamen. Additionally, activated areas included insula, dorsolateral prefrontal cortex and cerebellum. Cerebral blood flow increase in these regions was related to self-reports of craving assessed in the alcoholic patients. CONCLUSIONS: In this investigation, cue-induced alcohol craving was associated with activation of brain regions particularly involved in brain reward mechanisms, memory and attentional processes. These results are consistent with studies on craving for other addictive substances and may offer strategies for more elaborate studies on the neurobiology of addiction.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background The brain reward circuitry innervated by dopamine is critically disturbed in schizophrenia. This study aims to investigate the role of dopamine-related brain activity during prediction of monetary reward and loss in first episode schizophrenia patients. Methods We measured blood–oxygen-level dependent (BOLD) activity in 10 patients with schizophrenia (SCH) and 12 healthy controls during dopamine depletion with α-methylparatyrosine (AMPT) and during a placebo condition (PLA). Results AMPT reduced the activation of striatal and cortical brain regions in SCH. In SCH vs. controls reduced activation was found in the AMPT condition in several regions during anticipation of reward and loss, including areas of the striatum and frontal cortex. In SCH vs. controls reduced activation of the superior temporal gyrus and posterior cingulate was observed in PLA during anticipation of rewarding stimuli. PLA patients had reduced activation in the ventral striatum, frontal and cingulate cortex in anticipation of loss. The findings of reduced dopamine-related brain activity during AMPT were verified by reduced levels of dopamine in urine, homovanillic-acid in plasma and increased prolactin levels. Conclusions Our results indicate that dopamine depletion affects functioning of the cortico-striatal reward circuitry in SCH. The findings also suggest that neuronal functions associated with dopamine neurotransmission and attribution of salience to reward predicting stimuli are altered in schizophrenia.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In perceptual terms, the human body is a complex 3d shape which has to be interpreted by the observer to judge its attractiveness. Both body mass and shape have been suggested as strong predictors of female attractiveness. Normally body mass and shape co-vary, and it is difficult to differentiate their separate effects. A recent study suggested that altering body mass does not modulate activity in the reward mechanisms of the brain, but shape does. However, using computer generated female body-shaped greyscale images, based on a Principal Component Analysis of female bodies, we were able to construct images which covary with real female body mass (indexed with BMI) and not with body shape (indexed with WHR), and vice versa. Twelve observers (6 male and 6 female) rated these images for attractiveness during an fMRI study. The attractiveness ratings were correlated with changes in BMI and not WHR. Our primary fMRI results demonstrated that in addition to activation in higher visual areas (such as the extrastriate body area), changing BMI also modulated activity in the caudate nucleus, and other parts of the brain reward system. This shows that BMI, not WHR, modulates reward mechanisms in the brain and we infer that this may have important implications for judgements of ideal body size in eating disordered individuals.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

CONTEXT: Roux-en-Y gastric bypass (RYGB) surgery is an effective long-term intervention for weight loss maintenance, reducing appetite, and also food reward, via unclear mechanisms. OBJECTIVE: To investigate the role of elevated satiety gut hormones after RYGB, we examined food hedonic-reward responses after their acute post-prandial suppression. DESIGN: These were randomized, placebo-controlled, double-blind, crossover experimental medicine studies. PATIENTS: Two groups, more than 5 months after RYGB for obesity (n = 7-11), compared with nonobese controls (n = 10), or patients after gastric banding (BAND) surgery (n = 9) participated in the studies. INTERVENTION: Studies were performed after acute administration of the somatostatin analog octreotide or saline. In one study, patients after RYGB, and nonobese controls, performed a behavioral progressive ratio task for chocolate sweets. In another study, patients after RYGB, and controls after BAND surgery, performed a functional magnetic resonance imaging food picture evaluation task. MAIN OUTCOME MEASURES: Octreotide increased both appetitive food reward (breakpoint) in the progressive ratio task (n = 9), and food appeal (n = 9) and reward system blood oxygen level-dependent signal (n = 7) in the functional magnetic resonance imaging task, in the RYGB group, but not in the control groups. RESULTS: Octreotide suppressed postprandial plasma peptide YY, glucagon-like peptide-1, and fibroblast growth factor-19 after RYGB. The reduction in plasma peptide YY with octreotide positively correlated with the increase in brain reward system blood oxygen level-dependent signal in RYGB/BAND subjects, with a similar trend for glucagon-like peptide-1. CONCLUSIONS: Enhanced satiety gut hormone responses after RYGB may be a causative mechanism by which anatomical alterations of the gut in obesity surgery modify behavioral and brain reward responses to food.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we present a new neuroeconomics model for decision-making applied to the Attention-Deficit/Hyperactivity Disorder (ADHD). The model is based on the hypothesis that decision-making is dependent on the evaluation of expected rewards and risks assessed simultaneously in two decision spaces: the personal (PDS) and the interpersonal emotional spaces (IDS). Motivation to act is triggered by necessities identified in PDS or IDS. The adequacy of an action in fulfilling a given necessity is assumed to be dependent on the expected reward and risk evaluated in the decision spaces. Conflict generated by expected reward and risk influences the easiness (cognitive effort) and the future perspective of the decision-making. Finally, the willingness (not) to act is proposed to be a function of the expected reward (or risk), adequacy, easiness and future perspective. The two most frequent clinical forms are ADHD hyperactive (AD/HDhyp) and ADHD inattentive (AD/HDdin). AD/HDhyp behavior is hypothesized to be a consequence of experiencing high rewarding expectancies for short periods of time, low risk evaluation, and short future perspective for decision-making. AD/HDin is hypothesized to be a consequence of experiencing high rewarding expectancies for long periods of time, low risk evaluation, and long future perspective for decision-making.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The hypocretins, also known as orexins, are two neuropeptides now commonly described as critical components to maintain and regulate the stability of arousal. Several lines of evidence have raised the hypothesis that hypocretin-producing neurons are part of the circuitries that mediate the hypothalamic response to acute stress. Intracerebral administration of hypocretin leads to a dose-related reinstatement of drug and food seeking behaviors. Furthermore, stress-induced reinstatement can be blocked with hypocretin receptor 1 antagonism. These results, together with recent data showing that hypocretin is critically involved in cocaine sensitization through the recruitment of NMDA receptors in the ventral tegmental area, strongly suggest that activation of hypocretin neurons play a critical role in the development of the addiction process. The activity of hypocretin neurons may affect addictive behavior by contributing to brain sensitization or by modulating the brain reward system. Hypocretinergic cells, in coordination with brain stress systems may lead to a vulnerable state that facilitates the resumption of drug seeking behavior. Hence, the hypocretinergic system is a new drug target that may be used to prevent relapse of drug seeking

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract - Cannabis: what are the risks ? Cannabinoids from cannabis have a dual use and display often opposite pharmacological properties depending on the circumstances of use and the administered dose. Cannabinoids constitute mainly a recreative or addictive substance, but also a therapeutic drug. They can be either neurotoxic or neuroprotector, carcinogenic or an anti-cancer drug, hyperemetic or antiemetic, pro-inflammatory or anti-inflammatory... Improvement in in-door cultivation techniques and selection of high yield strains have resulted in a steadily increase of THC content. Cannabis is the most frequently prohibited drug used in Switzerland and Western countries. About half of teenagers have already experimented cannabis consumption. About 10% of cannabis users smoke it daily and can be considered as cannabis-dependant. About one third of these cannabis smokers are chronically intoxicated. THC, the main psychoactive drug interacts with the endocannnabinoid system which is made of cellular receptors, endogenous ligands and a complex intra-cellular biosynthetic, degradation and intra-cellular messengers machinery. The endocannabinoid system plays a major role in the fine tuning of the nervous system. It is thought to be important in memory, motor learning, and synaptic plasticity. At psychoactive dose, THC impairs psychomotor and neurocognitive performances. Learning and memory abilities are diminished. The risk to be responsible of a traffic car accident is slightly increased after administration of cannabis alone and strongly increased after combined use of alcohol and cannabis. With the exception of young children, cannabis intake does not lead to potentially fatal intoxication. However, cannabis exposure can act as trigger for cardiovascular accidents in rare vulnerable people. Young or vulnerable people are more at risk to develop a psychosis at adulthood and/or to become cannabis-dependant. Epidemiological studies have shown that the risk to develop a schizophrenia at adulthood is increased for cannabis smokers, especially for those who are early consumers. Likewise for the risk of depression and suicide attempt. Respiratory disease can be worsen after cannabis smoking. Pregnant and breast-feeding mothers should not take cannabis because THC gets into placenta and concentrates in breast milk. The most sensitive time-period to adverse side-effects of cannabis starts from foetus and extends to adolescence. The reason could be that the endocannabinoid system, the main target of THC, plays a major role in the setup of neuronal networks in the immature brain. The concomitant use of other psychoactive drugs such as alcohol, benzodiazepines or cocaine should be avoided because of possible mutual interactions. Furthermore, it has been demonstrated that a cross-sensitisation exists between most addictive drugs at the level of the brain reward system. Chronic use of cannabis leads to tolerance and withdrawals symptoms in case of cannabis intake interruption. Apart from the aforementioned unwanted side effects, cannabis displays useful and original medicinal properties which are currently under scientific evaluation. At the moment the benefit/risk ratio is not yet well assessed. Several minor phytocannabinoids or synthetic cannabinoids devoid of psychoactive properties could find their way in the modern pharmacopoeia (e.g. ajulemic acid). For therapeutic purposes, special cannabis varieties with unique cannabinoids composition (e.g. a high cannabidiol content) are preferred over those which are currently used for recreative smoking. The administration mode also differs in such a way that inhalation of carcinogenic pyrolytic compounds resulting from cannabis smoking is avoided. This can be achieved by inhaling cannabis vapors at low temperature with a vaporizer device. Résumé Les cannabinoïdes contenus dans la plante de cannabis ont un double usage et possèdent des propriétés opposées suivant les circonstances et les doses employées. Les cannabinoïdes, essentiellement drogue récréative ou d'abus pourraient, pour certains d'entre eux, devenir des médicaments. Selon les conditions d'utilisation, ils peuvent être neurotoxiques ou neuroprotecteurs, carcinogènes ou anticancéreux, hyper-émétiques ou antiémétiques, pro-inflammatoires ou anti-inflammatoires... Les techniques de culture sous serre indoor ainsi que la sélection de variétés de cannabis à fort potentiel de production ont conduit à un accroissement notable des taux de THC. Le cannabis est la drogue illégale la plus fréquemment consommée en Suisse et ailleurs dans le monde occidental. Environ la moitié des jeunes ont déjà expérimenté le cannabis. Environ 10 % des consommateurs le fument quotidiennement et en sont devenus dépendants. Un tiers de ces usagers peut être considéré comme chroniquement intoxiqué. Le THC, la principale substance psychoactive du cannabis, interagit avec le "système endocannabinoïde". Ce système est composé de récepteurs cellulaires, de ligands endogènes et d'un dispositif complexe de synthèse, de dégradation, de régulation et de messagers intra-cellulaires. Le système endocannabinoïde joue un rôle clé dans le réglage fin du système nerveux. Les endocannabinoïdes régulent la mémorisation, l'apprentissage moteur et la plasticité des liaisons nerveuses. À dose psychoactive, le THC réduit les performances psychomotrices et neurocognitives. Les facultés d'apprentissage et de mémorisation sont diminuées. Le risque d'être responsable d'un accident de circulation est augmenté après prise de cannabis, et ceci d'autant plus que de l'alcool aura été consommé parallèlement. À l'exception des jeunes enfants, la consommation de cannabis n'entraîne pas de risque potentiel d'intoxication mortelle. Toutefois, le cannabis pourrait agir comme facteur déclenchant d'accident cardiovasculaire chez de rares individus prédisposés. Les individus jeunes, et/ou vulnérables ont un risque significativement plus élevé de développer une psychose à l'âge adulte ou de devenir dépendant au cannabis. Des études épidémiologiques ont montré que le risque de développer une schizophrénie à l'âge adulte était augmenté pour les consommateurs de cannabis et ceci d'autant plus que l'âge de début de consommation était précoce. Il en va de même pour le risque de dépression. Les troubles respiratoires pourraient être exacerbés par la prise de cannabis. Les femmes enceintes et celles qui allaitent ne devraient pas consommer de cannabis car le THC traverse la barrière hémato-placentaire, en outre, il se concentre dans le lait maternel. La période de la vie la plus sensible aux effets néfastes du cannabis correspond à celle allant du foetus à l'adolescent. Le système endocannabinoïde sur lequel agit le THC serait en effet un acteur majeur orchestrant le développement des réseaux neuronaux dans le cerveau immature. La prise concomitante d'autres psychotropes comme l'alcool, les benzodiazépines ou la cocaïne conduit à des renforcements mutuels de leurs effets délétères. De plus, il a été montré l'existence d'une sensibilité croisée pour la majorité des psychotropes qui agissent sur le système de la récompense, le cannabis y compris, ce qui augmente ainsi le risque de pharmacodépendance. La prise régulière de doses élevées de cannabis entraîne l'apparition d'une tolérance et de symptômes de sevrage discrets à l'arrêt de la consommation. À part les effets négatifs mentionnés auparavant, le cannabis possède des propriétés médicales originales qui sont l'objet d'études attentives. Plusieurs cannabinoïdes mineurs naturels ou synthétiques, comme l'acide ajulémique, pourraient trouver un jour une place dans la pharmacopée. En usage thérapeutique, des variétés particulières de cannabis sont préférées, par exemple celles riches en cannabidiol non psychoactif. Le mode d'administration diffère de celui utilisé en mode récréatif. Par exemple, la vaporisation des cannabinoïdes à basse température est préférée à l'inhalation du "joint".

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Smoking influences body weight such that smokers weigh less than non-smokers and smoking cessation often leads to weight increase. The relationship between body weight and smoking is partly explained by the effect of nicotine on appetite and metabolism. However, the brain reward system is involved in the control of the intake of both food and tobacco. We evaluated the effect of single-nucleotide polymorphisms (SNPs) affecting body mass index (BMI) on smoking behavior, and tested the 32 SNPs identified in a meta-analysis for association with two smoking phenotypes, smoking initiation (SI) and the number of cigarettes smoked per day (CPD) in an Icelandic sample (N=34,216 smokers). Combined according to their effect on BMI, the SNPs correlate with both SI (r=0.019, P=0.00054) and CPD (r=0.032, P=8.0 × 10(-7)). These findings replicate in a second large data set (N=127,274, thereof 76,242 smokers) for both SI (P=1.2 × 10(-5)) and CPD (P=9.3 × 10(-5)). Notably, the variant most strongly associated with BMI (rs1558902-A in FTO) did not associate with smoking behavior. The association with smoking behavior is not due to the effect of the SNPs on BMI. Our results strongly point to a common biological basis of the regulation of our appetite for tobacco and food, and thus the vulnerability to nicotine addiction and obesity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The importance of the lateral hypothalamus in the pursuit of reward has long been recognized. However, the hypothalamic neuronal network involved in the regulation of reward still remains partially unknown. Hypocretins (aka orexins) are neuropeptides synthesized by a few thousand neurons restricted to the lateral hypothalamus and the perifornical area. Compelling evidence indicates that hypocretin neurons receive inputs from sensory and limbic systems and drive hyper-arousal possibly through modulation of stress responses. Major advances have been made in the elucidation of the hypocretin involvement in the regulation of arousal, stress, motivation, and reward seeking, without clearly defining the role of hypocretins in addictionrelated behaviors. We have recently gathered substantial evidence that points to a previously unidentified role for hypocretin-1 in driving relapse for cocaine seeking through activation of brain stress pathways. Meanwhile, several authors published concordant observations rather suggesting a direct activation of the mesolimbic dopamine system. In particular, hypocretin-1 has been shown to be critically involved in cocaine sensitization through the recruitment of NMDA receptors in the ventral tegmental area. Overall, on can conclude from recent findings that activation of hypocretin/orexin neurons plays a critical role in the development of the addiction process, either by contributing to brain sensitization (which is thought to lead to the unmanageable desire for drug intake) or by modulating the brain reward system that, in coordination with brain stress systems, leads to a vulnerable state that may facilitate relapse for drug seeking behavior.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Les voies d'administration qui provoquent une entrée rapide de la drogue au cerveau sont connues pour faciliter le développement de la toxicomanie. Les études animales modélisant cet effet ont montré que des rats, qui ont un accès prolongé à des injections intraveineuses rapides de cocaïne (injectée en 5 ou 90 secondes), s'autoadministrent plus de drogue, ont un entraînement opérant plus élevé et sont subséquemment plus motivés à obtenir la cocaïne. La question est maintenant de savoir comment l'autoadministration de cocaïne injectée rapidement promeut une augmentation de la motivation à obtenir de la cocaïne. Cette motivation exagérée pourrait être une conséquence de l'exposition prolongée à de larges quantités de cocaïne et/ou de l'effet persistant d'un entraînement opérant extensif. De plus, on sait qu'augmenter la vitesse d'administration de la cocaïne modifie les circuits de la récompense et de la motivation. Ainsi, ceci pourrait promouvoir la motivation excessive pour la drogue. Nous avons cherché à déterminer l'influence de l'exposition à la drogue et de l'entraînement opérant sur le développement d'une motivation exacerbée pour la drogue. Les rats se sont autoadministrés de la cocaïne injectée en 5 ou 90 secondes (s) durant un accès limité (1h/session) ou prolongé (6h/session) avec un ratio fixe. La motivation pour la cocaïne a par la suite été évaluée à l'aide d'un ratio progressif (PR). Les rats ayant reçu la drogue injectée en 5 s durant l'accès prolongé (par rapport au groupe 90 secondes) ont pris plus de drogue et eu un entraînement opérant plus extensif alors qu'il n'y avait pas de différences dans la consommation et le niveau d'entraînement opérant entre les groupes ayant subit un accès limité uniquement. Les rats ayant consommé la drogue injectée en 5s, indépendamment du temps d'accès, ont toujours exprimé une motivation plus grande pour la drogue en PR. La quantité de cocaïne consommée ou l'ampleur de l'entraînement opérant ont été positivement corrélés avec la consommation de cocaïne en PR dans certains groupes. Par contre, le groupe qui a eu un accès prolongé aux injections rapides a montré une augmentation dans sa motivation à s'autoadministrer de la drogue qui n'était prédite ni par la quantité de cocaïne consommée ni par l'étendue de l'entraînement opérant. Ces résultats suggèrent que des injections rapide de cocaïne pourraient faciliter la toxicomanie en favorisant entre autre des modifications neurobiologiques qui mènent à une motivation pathologique pour la drogue.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although extensive indirect evidence exists to suggest that the central dopaminergic system plays a significant role in the modulation of arousal, the functional effect of the dopaminergic influence on the regulation of the sleep-wake cycle remains unclear. Thirteen healthy volunteers and 15 unmedicated subjects with a history of major depressive disorder underwent catecholamine depletion (CD) using oral alpha-methyl-para-tyrosine in a randomized, placebo-controlled, double-blind, crossover study. The main outcome measures in both sessions were sleepiness (Stanford-Sleepiness-Scale), cerebral glucose metabolism (positron emission tomography), and serum prolactin concentration. CD consistently induced clinically relevant sleepiness in both groups. The CD-induced prolactin increase significantly correlated with CD-induced sleepiness but not with CD-induced mood and anxiety symptoms. CD-induced sleepiness correlated with CD-induced increases in metabolism in the medial and orbital frontal cortex, bilateral superior temporal cortex, left insula, cingulate motor area and in the vicinity of the periaqueductal gray. This study suggests that the association between dopamine depletion and sleepiness is independent of the brain reward system and the risk for depression. The visceromotor system, the cingulate motor area, the periaqueductal gray and the caudal hypothalamus may mediate the impact of the dopaminergic system on regulation of wakefulness and sleep.