958 resultados para brain damage


Relevância:

100.00% 100.00%

Publicador:

Resumo:

‘Practice Forum’ provides a forum for social work practitioners to share their practice with others; to describe what they are doing and assess its effectiveness. The practice of case management is applied in a wide range of service delivery models to meet complex client needs. Unfortunately, cost containment and lack of clarity of the role of the case manager has blurred the definition and practice of case management for both the consumer and professional providers. This article examines two cases of a small non-government agency in Melbourne called Alcohol Related Brain Injury Assessment, Accommodation & Support Inc. (ARBIAS) where case management services are delivered to people with alcohol acquired brain damage. The analysis presented here supports the view that continuity of care and intensive relationship building with clients is vital for successful client outcomes and has application to a variety of programs which service chronically disabled clients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic excessive alcohol intoxications evoke cumulative damage to tissues and organs. We examined prefrontal cortex (Brodmann's area (BA) 9) from 20 human alcoholics and 20 age, gender, and postmortem delay matched control subjects. H & E staining and light microscopy of prefrontal cortex tissue revealed a reduction in the levels of cytoskeleton surrounding the nuclei of cortical and subcortical neurons, and a disruption of subcortical neuron patterning in alcoholic subjects. BA 9 tissue homogenisation and one dimensional polyacrylamide gel electrophoresis (PAGE) proteomics of cytosolic proteins identified dramatic reductions in the protein levels of spectrin beta II, and alpha- and beta-tubulins in alcoholics, and these were validated and quantitated by Western blotting. We detected a significant increase in a-tubulin acetylation in alcoholics, a non-significant increase in isoaspartate protein damage, but a significant increase in protein isoaspartyl methyltransferase protein levels, the enzyme that triggers isoaspartate damage repair in vivo. There was also a significant reduction in proteasome activity in alcoholics. One dimensional PAGE of membrane-enriched fractions detected a reduction in beta-spectrin protein levels, and a significant increase in transmembranous alpha 3 (catalytic) subunit of the Na+, K+-ATPase in alcoholic subjects. However, control subjects retained stable oligomeric forms of a-subunit that were diminished in alcoholics. In alcoholics, significant loss of cytosolic alpha-and beta-tubulins were also seen in caudate nucleus, hippocampus and cerebellum, but to different levels, indicative of brain regional susceptibility to alcohol-related damage. Collectively, these protein changes provide a molecular basis for some of the neuronal and behavioural abnormalities attributed to alcoholics

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alcohol-related brain damage (ARBD) is primarily caused by chronic alcohol misuse and thiamine deficiency, and results in a broad range of impairments. Despite the increasing incidence of ARBD in the UK in recent decades, it is currently underdiagnosed, managed inappropriately and treated inadequately. Moreover, information about assessments for individuals with ARBD is currently absent from clinical guidelines and policy documents. The aim of this paper was to review the evidence relating to the neurological, neuropsychological, psychosocial, physical and nutritional assessment of individuals with ARBD to identify appropriate assessment tools that could be used to measure and monitor the impact of ARBD over time. A systematic online database search revealed a total of 160 separate references, 133 of which were rejected and two of which could not be accessed. Twenty-five papers were included in the review, including six neuroimaging studies, 17 neuropsychological studies and two studies using psychosocial methods of assessment. A lack of evidence for nutritional and physical assessment of individuals with ARBD was found. The review findings are inconclusive; most instruments currently used in ARBD research have not specifically been validated for use within an ARBD context. Further research is required to identify comprehensive methods of ARBD assessment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exacerbation of cerebrospinal fluid (CSF) inflammation in response to bacteriolysis by beta-lactam antibiotics contributes to brain damage and neurological sequelae in bacterial meningitis. Daptomycin, a nonlytic antibiotic acting on Gram-positive bacteria, lessens inflammation and brain injury compared to ceftriaxone. With a view to a clinical application for pediatric bacterial meningitis, we investigated the effect of combining daptomycin or rifampin with ceftriaxone in an infant rat pneumococcal meningitis model. Eleven-day-old Wistar rats with pneumococcal meningitis were randomized to treatment starting at 18 h after infection with (i) ceftriaxone (100 mg/kg of body weight, subcutaneously [s.c.], twice a day [b.i.d.]), (ii) daptomycin (10 mg/kg, s.c., daily) followed 15 min later by ceftriaxone, or (iii) rifampin (20 mg/kg, intraperitoneally [i.p.], b.i.d.) followed 15 min later by ceftriaxone. CSF was sampled at 6 and 22 h after the initiation of therapy and was assessed for concentrations of defined chemokines and cytokines. Brain damage was quantified by histomorphometry at 40 h after infection and hearing loss was assessed at 3 weeks after infection. Daptomycin plus ceftriaxone versus ceftriaxone significantly (P < 0.04) lowered CSF concentrations of monocyte chemoattractant protein 1 (MCP-1), MIP-1α, and interleukin 6 (IL-6) at 6 h and MIP-1α, IL-6, and IL-10 at 22 h after initiation of therapy, led to significantly (P < 0.01) less apoptosis, and significantly (P < 0.01) improved hearing capacity. While rifampin plus ceftriaxone versus ceftriaxone also led to lower CSF inflammation (P < 0.02 for IL-6 at 6 h), it had no significant effect on apoptosis and hearing capacity. Adjuvant daptomycin could therefore offer added benefits for the treatment of pediatric pneumococcal meningitis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recovery from eye movement deficits after cortical lesions is amazingly rapid and almost complete, which is in sharp contrast to most other neurological deficits of cerebral lesions. The underlying mechanisms of this successful recovery remain uncertain. We had the rare opportunity to examine two patients with recovery from saccade deficits after a lesion restricted to the frontal eye field (FEF) by means of transcranial magnetic stimulation (TMS). The results provide direct evidence that recovery depended on the integrity of the oculomotor regions of the nonlesioned contralesional hemisphere, and that the compensatory network is task-specific.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adverse outcome in bacterial meningitis is associated with the breakdown of the blood-brain barrier (BBB). Matrix-metalloproteinases (MMPs) facilitate this process by degradation of components of the BBB. This in turn results in acute complications of bacterial meningitis including edema formation, increased intracranial pressure and subsequent ischemia. We determined the parenchymal balance of MMP-9 and TIMP-1 (tissue inhibitor of MMP) and the structural integrity of the BBB in relation to cortical damage in an infant rat model of pneumococcal meningitis. The data demonstrate that the extent of cortical damage is significantly associated with parenchymal gelatinolytic activity and collagen type IV degradation. The increased gelatinolysis was found to be associated with a brain parenchymal imbalance of MMP-9/TIMP-1. These findings provide support to the concept that MMPs mediated disruption of the BBB contributes to the pathogenesis of bacterial meningitis and that protection of the vascular unit may have neuroprotective potential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bacterial meningitis due to Streptococcus pneumoniae is associated with an significant mortality rate and persisting neurologic sequelae including sensory-motor deficits, seizures, and impairments of learning and memory. The histomorphological correlate of these sequelae is a pattern of brain damage characterized by necrotic tissue damage in the cerebral cortex and apoptosis of neurons in the hippocampal dentate gyrus. Different animal models of pneumococcal meningitis have been developed to study the pathogenesis of the disease. To date, the infant rat model is unique in mimicking both forms of brain damage documented in the human disease. In the present study, we established an infant mouse model of pneumococcal meningitis. Eleven-days-old C57BL/6 (n = 299), CD1 (n = 42) and BALB/c (n = 14) mice were infected by intracisternal injection of live Streptococcus pneumoniae. Sixteen hours after infection, all mice developed meningitis as documented by positive bacterial cultures of the cerebrospinal fluid. Sixty percent of infected C57BL/6 mice survived more than 40 h after infection (50% of CD1, 0% of BALB/c). Histological evaluations of brain sections revealed apoptosis in the dentate gyrus of the hippocampus in 27% of infected C57BL/6 and in 5% of infected CD1 mice. Apoptosis was confirmed by immunoassaying for active caspase-3 and by TUNEL staining. Other forms of brain damage were found exclusively in C57BL/6, i.e. caspase-3 independent (pyknotic) cell death in the dentate gyrus in 2% and cortical damage in 11% of infected mice. This model may prove useful for studies on the pathogenesis of brain injury in childhood bacterial meningitis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiplication of bacteria within the central nervous system compartment triggers a host response with an overshooting inflammatory reaction which leads to brain parenchyma damage. Some of the inflammatory and neurotoxic mediators involved in the processes leading to neuronal injury during bacterial meningitis have been identified in recent years. As a result, the therapeutic approach to the disease has widened from eradication of the bacterial pathogen with antibiotics to attenuation of the detrimental effects of host defences. Corticosteroids represent an example of the adjuvant therapeutic strategies aimed at downmodulating excessive inflammation in the infected central nervous system. Pathophysiological concepts derived from an experimental rat model of bacterial meningitis revealed possible therapeutic strategies for prevention of brain damage. The insights gained led to the evaluation of new therapeutic modalities such as anticytokine agents, matrix metalloproteinase inhibitors, antioxidants, and antagonists of endothelin and glutamate. Bacterial meningitis is still associated with persistent neurological sequelae in approximately one third of surviving patients. Future research in the model will evaluate whether the neuroprotective agents identified so far have the potential to attenuate learning disabilities as a long-term consequence of bacterial meningitis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study was performed to evaluate the role of matrix metalloproteinases (MMP) in the pathogenesis of the inflammatory reaction and the development of neuronal injury in a rat model of bacterial meningitis. mRNA encoding specific MMPs (MMP-3, MMP-7, MMP-8, and MMP-9) and the inflammatory cytokine tumor necrosis factor alpha (TNF-alpha) were significantly (P < 0.04) upregulated, compared to the beta-actin housekeeping gene, in cortical homogenates at 20 h after infection. In parallel, concentrations of MMP-9 and TNF-alpha in cerebrospinal fluid (CSF) were significantly increased in rats with bacterial meningitis compared to uninfected animals (P = 0.002) and showed a close correlation (r = 0.76; P < 0. 001). Treatment with a hydroxamic acid-type MMP inhibitor (GM6001; 65 mg/kg intraperitoneally every 12 h) beginning at the time of infection significantly lowered the MMP-9 (P < 0.02) and TNF-alpha (P < 0.02) levels in CSF. Histopathology at 25.5 +/- 5.7 h after infection showed neuronal injury (median [range], 3.5% [0 to 17.5%] of the cortex), which was significantly (P < 0.01) reduced to 0% (0 to 10.8%) by GM6001. This is the first report to demonstrate that MMPs contribute to the development of neuronal injury in bacterial meningitis and that inhibition of MMPs may be an effective approach to prevent brain damage as a consequence of the disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

TLR2 signaling participates in the pathogenesis of pneumococcal meningitis. In infant rats, the TLR2 agonist Pam(3)CysSK(4) was applied intracisternally (0.5 microg in 10 microl saline) alone or after induction of pneumococcal meningitis to investigate the effect of TLR2 activation on cerebrospinal fluid (CSF) inflammation and hippocampal apoptosis. A dose effect of Pam(3)CysSK(4) on apoptosis was investigated by intracisternal application of 0.5 microg in 10 microl saline and 40 microg in 20 microl saline. Pam(3)CysSK(4) neither induced apoptosis in sham-operated mice nor aggravated apoptosis in acute infection. However, Pam(3)CysSK(4) induced pleocytosis, TNF-alpha and MMP-9 in CSF in sham-infection but not during acute meningitis. We conclude that TLR2 signaling triggered by Pam(3)CysSK(4) at a dosage capable to induce a neuroinflammatory response does not induce hippocampal apoptosis in the infant rat model of experimental pneumococcal meningitis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Perinatal brain damage is associated not only with hypoxic-ischemic insults but also with intrauterine inflammation. A combination of antenatal inflammation and asphyxia increases the risk of cerebral palsy >70 times. The aim of the present study was to determine the effect of intracisternal (i.c.) administration of endotoxin [lipopolysaccharides (LPS)] on subsequent hypoxic-ischemic brain damage in neonatal rats. Seven-day-old Wistar rats were subjected to i.c. application of NaCl or LPS (5 microg/pup). One hour later, the left common carotid artery was exposed through a midline neck incision and ligated with 6-0 surgical silk. After another hour of recovery, the pups were subjected to a hypoxic gas mixture (8% oxygen/92% nitrogen) for 60 min. The animals were randomized to four experimental groups: 1) sham control group, left common carotid artery exposed but not ligated (n = 5); 2) LPS group, subjected to i.c. application of LPS (n = 7); 3) hypoxic-ischemic study group, i.c. injection of NaCl and exposure to hypoxia after ligation of the left carotid artery (n = 17); or 4) hypoxic-ischemic/LPS study group, i.c. injection of LPS and exposure to hypoxia after ligation of the left carotid artery (n = 19). Seven days later, neonatal brains were assessed for neuronal cell damage. In a second set of experiments, rat pups received an i.c. injection of LPS (5 microg/pup) and were evaluated for tumor necrosis factor-alpha expression by immunohistochemistry. Neuronal cell damage could not be observed in the sham control or in the LPS group. In the hypoxic-ischemic/LPS group, neuronal injury in the cerebral cortex was significantly higher than in animals that were subjected to hypoxia/ischemia after i.c. application of NaCl. Injecting LPS intracisternally caused a marked expression of tumor necrosis factor-alpha in the leptomeninges. Applying LPS intracisternally sensitizes the immature rat brain to a subsequent hypoxic-ischemic insult.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Gambling is a form of nonsubstance addiction classified as an impulse control disorder. Pathologic gamblers are considered healthy with respect to their cognitive status. Lesions of the frontolimbic systems, mostly of the right hemisphere, are associated with addictive behavior. Because gamblers are not regarded as "brain-lesioned" and gambling is nontoxic, gambling is a model to test whether addicted "healthy" people are relatively impaired in frontolimbic neuropsychological functions. METHODS Twenty-one nonsubstance dependent gamblers and nineteen healthy subjects underwent a behavioral neurologic interview centered on incidence, origin, and symptoms of possible brain damage, a neuropsychological examination, and an electroencephalogram. RESULTS Seventeen gamblers (81%) had a positive medical history for brain damage (mainly traumatic head injury, pre- or perinatal complications). The gamblers, compared with the controls, were significantly more impaired in concentration, memory, and executive functions, and evidenced a higher prevalence of non-right-handedness (43%) and, non-left-hemisphere language dominance (52%). Electroencephalogram (EEG) revealed dysfunctional activity in 65% of the gamblers, compared with 26% of controls. CONCLUSIONS This study shows that the "healthy" gamblers are indeed brain-damaged. Compared with a matched control population, pathologic gamblers evidenced more brain injuries, more fronto-temporo-limbic neuropsychological dysfunctions and more EEG abnormalities. The authors thus conjecture that addictive gambling may be a consequence of brain damage, especially of the frontolimbic systems, a finding that may well have medicolegal consequences.