955 resultados para bovine embryo
Resumo:
The objective of this study was to evaluate pregnancy rates of recipients of different breed groups (Nellore and crossbreed), as well as the effects of size and type of the corpus luteum (CL) on plasmatic concentrations of progesterone and pregnancy rates of embryo recipients. A total of 152 heifers were synchronized with progesterone implants and on the day of embryo transfer, previously obtained by superovulation and frozen in ethylene glycol, the diameter and type of the corpus luteum (cavitary and compact) was measured and blood was collected for progesterone measurement. The pregnancy rate was 44.1%, with a diameter of corpus luteum higher in recipients that became pregnant (2.03±0.41) compared with non-pregnant ones (1.86±0.34 cm). Plasmatic concentrations of progesterone did not differ between pregnant (1.50±1.05) and non-pregnant (1.31±0.91 ng/mL) animals. The type of corpus luteum did not influence the pregnancy rates. Only Angus and crossbred Marchigiana differ among themselves in pregnancy rates (33.3 and 59.2%, respectively). The pregnancy probability was affected only by CL diameter, but not by P4 plasmatic concentration. Selection of the corpus luteum size at the time of embryo transfer is an important factor to increase pregnancy rates in recipients, and compact and cavitary corpora lutea do not influence the pregnancy rates of bovine embryo recipients. Nellore recipients have pregnancy rates that are satisfactory and comparable to crossbred (Bos taurus × Bos indicus) recipients.
Resumo:
The aim of this study was to evaluate the suitability of a commercial kit for bovine embryo vitrification for cryopreserving cat oocytes and to evaluate comparatively the effects of its use with slow freezing procedure on cryotolerance in terms of morphology and oocyte resumption of meiosis. Germinal vesicle stage oocytes isolated from cat ovaries were either vitrified (n=72) using a vitrification kit for bovine embryo or slow frozen (n=69) by exposing oocyte to ethylene glycol solution before being transferred to a programmable embryo freezer. After thawing and warming, oocytes were cultured for 48h and then were examined for meiosis resumption using bisbenzimide fluorescent staining (Hoechst 33342). Fresh immature oocytes (n=92) were used as the control group. The proportion of oocytes recovered in a morphologically normal state after thawing/warming was significantly higher in frozen oocytes (94.5%) than in the vitrified ones (75%, p<0.01). Morphological integrity after culture was similar in vitrified (73.6%) and slow frozen oocytes (76.8%); however, only 37.5% of the morphologically normal oocytes resumed meiosis after vitrification compared to 60.9% of those submitted to slow freezing procedure (p<0.01). Fresh oocytes showed higher morphological integrity (91.3%) and meiosis resumption rates (82.6%, p<0.002) than cryopreserved oocytes, irrespective of the procedure used. These results suggest that immature cat oocytes vitrified with a kit for bovine embryos retain their capacity to resume meiosis after warming and culture, albeit at lower rates than slow frozen oocytes. Vitrification and slow freezing methods show similar proportions of oocytes with normal morphology after culture, which demonstrate that thawed and warmed oocytes that resist to cryodamage have the same chances to maintain their integrity after 48h of culture. © 2012 Blackwell Verlag GmbH.
Resumo:
There is species divergence in control of DNA methylation during preimplantation development. The exact pattern of methylation in the bovine embryo has not been established nor has its regulation by gender or maternal signals that regulate development such as colony stimulating factor 2 (CSF2). Using immunofluorescent labeling with anti-5-methylcytosine and embryos produced with X-chromosome sorted sperm, it was demonstrated that methylation decreased from the 2-cell stage to the 6-8 cell stage and then increased thereafter up to the blastocyst stage. In a second experiment, embryos of specific genders were produced by fertilization with X- or Y-sorted sperm. The developmental pattern was similar to the first experiment, but there was stage × gender interaction. Methylation was greater for females at the 8-cell stage but greater for males at the blastocyst stage. Treatment with CSF2 had no effect on labeling for DNA methylation in blastocysts. Methylation was lower for inner cell mass cells (i.e., cells that did not label with anti-CDX2) than for trophectoderm (CDX2-positive). The possible role for DNMT3B in developmental changes in methylation was evaluated by determining gene expression and degree of methylation. Steady-state mRNA for DNMT3B decreased from the 2-cell stage to a nadir for D 5 embryos >16 cells and then increased at the blastocyst stage. High resolution melting analysis was used to assess methylation of a CpG rich region in an intronic region of DNMT3B. Methylation percent decreased between the 6-8 cell and the blastocyst stage but there was no difference in methylation between ICM and TE. Results indicate that DNA methylation undergoes dynamic changes during the preimplantation period in a manner that is dependent upon gender and cell lineage. Developmental changes in expression of DNMT3B are indicative of a possible role in changes in methylation. Moreover, DNMT3B itself appears to be under epigenetic control by methylation. © 2013 Dobbs et al.
Resumo:
Different cell cycle synchronization methods were used to increase the mitotic index and accuracy of sex determination in murine and bovine embryos. For sexing purposes, colchicine treatment for 2, 4, 6 and 8 h and the FdU-thymidine-colchicine combination were tested in murine embryos. The best results were obtained with colchicine treatment for 8 h (96.88% accuracy) and with FdU-thymidine-colchicine (97.22% accuracy). Mitotic indexes differed significantly between the 2 treatments (21.71% for colchicine and 32.95% for FdU-thymidine-colchicine). For sex identification of murine and bovine demi-embryos, both treatments were demonstrated to be equally effective (nearly 90%). The mitotic index for the FdU-treated murine demi-embryos (19.04%) was higher than the one obtained for the 8-h colchicine treatment (15.62%).
Resumo:
The objectives of this study were to evaluate the effect of low-level laser irradiation (LLLI) on bovine oocyte and granulosa cells metabolism during in vitro maturation (IVM) and further embryo development. Cumulus-oocytes complexes (COCs) were subjected (experimental group) or not (control group) to irradiation with LLLI in a 633-nm wavelength and 1 J/cm2 fluency. The COCs were evaluated after 30 min, 8, 16, and 24 h of IVM. Cumulus cells were evaluated for cell cycle status, mitochondrial activity, and viability (flow cytometry). Oocytes were assessed for meiotic progression status (nuclear staining), cell cycle genes content [real-time polymerase chain reaction (PCR)], and signal transduction status (western blot). The COCs were also in vitro fertilized, and the cleavage and blastocyst rates were assessed. Comparisons among groups were statistically performed with 5% significance level. For cumulus cells, a significant increase in mitochondrial membrane potential and the number of cells progressing through the cycle could be observed. Significant increases on cyclin B and cyclin-dependent kinase (CDK4) levels were also observed. Concerning the oocytes, a significantly higher amount of total mitogen-activated protein kinase was found after 8 h of irradiation, followed by a decrease in all cell cycle genes transcripts, exception made for the CDK4. However, no differences were observed in meiotic progression or embryo production. In conclusion, LLLI is an efficient tool to modulate the granulosa cells and oocyte metabolism
Resumo:
The aims of this study were (i) to measure the direct effects of exogenous human recombinant PON1 (rPON1) on bovine oocyte maturation at the molecular level (gene expression) and (ii) to measure the carry-over effects of PON1 on pre-implantation embryo development in vitro.
Resumo:
2015
Resumo:
2016
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)