988 resultados para boron nitride (BN) nanodisks


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increasing concerns about the atmospheric CO2 concentration and its impact on the environment are motivating researchers to discover new materials and technologies for efficient CO2 capture and conversion. Here, we report a study of the adsorption of CO2, CH4, and H2 on boron nitride (BN) nanosheets and nanotubes (NTs) with different charge states. The results show that the process of CO2 capture/release can be simply controlled by switching on/off the charges carried by BN nanomaterials. CO2 molecules form weak interactions with uncharged BN nanomaterials and are weakly adsorbed. When extra electrons are introduced to these nanomaterials (i.e., when they are negatively charged), CO2 molecules become tightly bound and strongly adsorbed. Once the electrons are removed, CO2 molecules spontaneously desorb from BN absorbents. In addition, these negatively charged BN nanosorbents show high selectivity for separating CO2 from its mixtures with CH4 and/or H2. Our study demonstrates that BN nanomaterials are excellent absorbents for controllable, highly selective, and reversible capture and release of CO2. In addition, the charge density applied in this study is of the order of 1013 cm–2 of BN nanomaterials and can be easily realized experimentally.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanotubes and nanosheets are low-dimensional nanomaterials with unique properties that can be exploited for numerous applications. This book offers a complete overview of their structure, properties, development, modeling approaches, and practical use. It focuses attention on boron nitride (BN) nanotubes, which have had major interest given their special high-temperature properties, as well as graphene nanosheets, BN nanosheets, and metal oxide nanosheets. Key topics include surface functionalization of nanotubes for composite applications, wetting property changes for biocompatible environments, and graphene for energy storage applications

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural gas (the main component is methane) has been widely used as a fuel and raw material in industry. Removal of nitrogen (N2) from methane (CH4) can reduce the cost of natural gas transport and improve its efficiency. However, their extremely similar size increases the difficulty of separating N2 from CH4. In this study, we have performed a comprehensive investigation of N2 and CH4 adsorption on different charge states of boron nitride (BN) nanocage fullerene, B36N36, by using a density functional theory approach. The calculational results indicate that B36N36 in the negatively charged state has high selectivity in separating N2 from CH4. Moreover, once the extra electron is removed from the BN nanocage, the N2 will be released from the material. This study demonstrates that the B36N36 fullerene can be used as a highly selective and reusable material for the separation of N2 from CH4. The study also provides a clue to experimental design and application of BN nanomaterials for natural gas purification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modification of graphene to open a robust gap in its electronic spectrum is essential for its use in field effect transistors and photochemistry applications. Inspired by recent experimental success in the preparation of homogeneous alloys of graphene and boron nitride (BN), we consider here engineering the electronic structure and bandgap of C2xB1−xN1−x alloys via both compositional and configurational modification. We start from the BN end-member, which already has a large bandgap, and then show that (a) the bandgap can in principle be reduced to about 2 eV with moderate substitution of C (x < 0.25); and (b) the electronic structure of C2xB1−xN1−x can be further tuned not only with composition x, but also with the configuration adopted by C substituents in the BN matrix. Our analysis, based on accurate screened hybrid functional calculations, provides a clear understanding of the correlation found between the bandgap and the level of aggregation of C atoms: the bandgap decreases most when the C atoms are maximally isolated, and increases with aggregation of C atoms due to the formation of bonding and anti-bonding bands associated with hybridization of occupied and empty defect states. We determine the location of valence and conduction band edges relative to vacuum and discuss the implications on the potential use of 2D C2xB1−xN1−x alloys in photocatalytic applications. Finally, we assess the thermodynamic limitations on the formation of these alloys using a cluster expansion model derived from first-principles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Boron nitride (BN) nanotubes have the same nanostructure as carbon nanotubes but are found to exhibit significant resistance to oxidation at high temperatures. Our systematic study has revealed that BN nanotubes are stable at 700 °C in air and that some thin nanotubes (diameter less than 20 nm) with perfect multiwalled cylindrical structure can survive up to 900 °C. Thermogravimetric analysis reveals an onset temperature for oxidation of BN nanotubes of 800 °C compared with only 400 °C for carbon nanotubes under the same conditions. This more pronounced resistance of BN nanotubes to oxidation is inherited from the hexagonal BN and also depends on the nanocrystalline structure. This high level of resistance to oxidation allows promising BN nanotube applications at
high temperatures

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A purification process was developed for the first time for boron nitride (BN) nanotubes. BN nanotubes, prepared using a ball milling and annealing method, contain a high yield of nanotubes and a small amount of BN and metal catalyst particles. The metal particles can be dissolved in an HCl solution. Fine BN nanoparticles and thin layers were first converted to water soluble B2O3 via a partial oxidation treatment at 800 °C. The oxide particles and layers can then be dissolved in hot water. Thermogravimetric analysis has been used to determine an adequate oxidation temperature at which fine BN particles were oxidized.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When growing one-dimensional (1D) nanomaterials via the vapour–liquid–solid (VLS) model, the substrates usually need to be coated with a layer of catalyst film. In this study, however, an effective approach for the synthesis of boron nitride (BN) nanowires directly onto commercial stainless-steel foils has been demonstrated. Growth occurs by heating boron and zinc oxide (ZnO) powders at 1100 °C under a mixture of nitrogen and hydrogen gas flow (200 ml min−1). The stainless-steel foils played an additional role of catalyst besides substrate during the VLS growth of these BN nanowires. The as-synthesized nanowires emit strong photoluminescence (PL) bands at 515, 535 and 728 nm. In addition, we found that the gas flow rate and the hydrogen content in the gas mixture strongly affected the diameter and yield of the nanowires by changing the relative concentration of the nanowire growth species in the chamber.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A thick layer of pure boron nitride (BN) nanowires with a uniform diameter of 20 nm was synthesized for the first time using a CVD process with a new precursor of boron triiodide (BI3). Transmission electron microscopy revealed a nanocrystalline structure in the BN nanowires and the absence of any catalyst particle. Some BN nanowires self-assembled into thick threads up to several hundred micrometres long on top of the nanowire layer. The nitriding reactions and lack of catalyst suggest new formation mechanisms of the BN nanowires.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We reported 11B nuclear magnetic resonance studies of boron nitride (BN) nanotubes prepared by mechano-thermal route. The NMR lineshape obtained at 192.493 MHz (14.7 T) was fitted with two Gaussian functions, and the 11B nuclear magnetization relaxations were satisfied with the stretched–exponential function, exp[-(tlT1)(D+1)/6] (D: space dimension) at all temperatures. In addition, the temperature dependence of spin–lattice relaxation rates was well described by Ti-1 = aT (a: constant, T: temperature) and could be understood in terms of direct phonon process. All the 11BNMR results were explained by considering the inhomogeneous distribution of the paramagnetic metal catalysts, such as α-Fe, Fe–N, and Fe2 B, that were incorporated during the process of high-energy ball milling of boron powder and be synthesized during subsequent thermal annealing. X-ray powder diffraction as well as electron paramagnetic resonance (EPR) on BN nanotubes were also conducted and the results obtained supported these conclusions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Boron nitride (BN) nanotubes of different sizes and tubular structures exhibit very different mechanical and chemical properties, as well as different applications. BN nanotubes of different sizes and nanostructures have been produced in different nitriding gases in a milling and annealing process, in which elemental boron powder was first milled in NH3 for 150 h and subsequently annealed at 1,200 °C for 6 h. The influence of nitriding gases was investigated by using N2, NH3, N2–H2 mixture gases. A relatively slow nitriding reaction in NH3 gas leaded to a 2D growth of BN (002) basal planes and the formation of thin BN nanotubes without the help of metal catalysts. Fast nitriding reactions occurred in N2 or N2–H2 mixture gases, catalyzed by metal particles, resulted in 3D crystal growth and the formation of many large cylindrical and bamboo tubes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A boron nitride (BN) nanostructure, conical BN nanorod, has been synthesized in a large quantity on Si substrates for the first time via the ball-milling and annealing method. Nitridation of milled boron carbide (B4C) powders was performed in nitrogen gas at 1300°C on the surface of the substrates to form the BN nanorods. The highly crystallized nanorods consist of conical BN basal layers stacked along the nanorod axis. Ball milling of the B4C powders can significantly enhance the nitridation of the powders and thus facilitate the formation of nanorods during the annealing process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Decoration of nitrogen vacancies by oxygen atoms has been studied by near-edge X-ray absorption fine structure (NEXAFS) around B K-edge in several boron nitride (BN) structures, including bamboo-like and multi-walled BN nanotubes. Breaking of B-N bonds and formation of nitrogen vacancies under low-energy ion bombardment reduces oxidation resistance of BN structures and promotes an efficient oxygen-healing mechanism, in full agreement with some recent theoretical predictions. The formation of mixed O-B-N and B-O bonds is clearly identified by well-resolved peaks in NEXAFS spectra of excited boron atoms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mechanical cleavage by Scotch tape was the first method to produce graphene and is still widely used in laboratories. However, a critical problem of this method is the extremely low yield. We have tailored ball milling conditions to produce gentle shear forces that produce high quality boron nitride (BN) nanosheets in high yield and efficiency. The in-plane structure of the BN nanosheets has not been damaged as shown by near edge X-ray absorption fine structure measurements. The benzyl benzoate acts as the milling agent to reduce the ball impacts and milling contamination. This method is applicable to any layered materials for producing nanosheets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Graphene, multi-wall carbon nanotube (MWCNT) and fine boron nitride (BN) particles were separately applied with a resin onto a cotton fabric, and the effect of the thin composite coatings on the thermal conductive property, air permeability, wettability and color appearance of the cotton fabric was examined. The existence of the fillers within the coating layer increased the thermal conductivity of the coated cotton fabric. At the same coating content, the increase in fabric thermal conductivity was in the order of graphene > BN > MWCNT, ranging from 132 % to 842 % (based on pure cotton fabric). The coating led to 73 %, 69 % and 64 % reduction in air permeability when it respectively contained 50.0 wt% graphene, BN and MWCNTs. The graphene and MWCNT treated fabrics had a black appearance, but the coating had almost no influence on the fabric hydrophilicity. The BN coating made cotton fabric surface hydrophobic, with little change in fabric color.