985 resultados para bone marrow donation
Resumo:
An unusual presentation of a focal osteoporotic bone marrow defect (FOBMD) of the mandible mimicking a cystic lesion is documented. A definitive diagnosis could be established only on the basis of the histopathologic evaluation. A 66-year-old Brazilian woman was referred by her dentist for well-defined radiolucency of the mandibular molar region suggesting a cystic lesion of odontogenic origin. The computed tomography scan confirmed that the lesion did not affect the corticals. The biopsy confirmed the diagnosis of FOBMD. The diagnostic difficulty in the current case is obvious, because FOBMD, usually exhibiting an ill-defined radiolucency, is seldom suspected preoperatively when a differential diagnosis is considered for focal well-defined radiolucent areas in the jaws.
Resumo:
The present work compared the local injection of mononuclear cells to the spinal cord lateral funiculus with the alternative approach of local delivery with fibrin sealant after ventral root avulsion (VRA) and reimplantation. For that, female adult Lewis rats were divided into the following groups: avulsion only, reimplantation with fibrin sealant; root repair with fibrin sealant associated with mononuclear cells; and repair with fibrin sealant and injected mononuclear cells. Cell therapy resulted in greater survival of spinal motoneurons up to four weeks post-surgery, especially when mononuclear cells were added to the fibrin glue. Injection of mononuclear cells to the lateral funiculus yield similar results to the reimplantation alone. Additionally, mononuclear cells added to the fibrin glue increased neurotrophic factor gene transcript levels in the spinal cord ventral horn. Regarding the motor recovery, evaluated by the functional peroneal index, as well as the paw print pressure, cell treated rats performed equally well as compared to reimplanted only animals, and significantly better than the avulsion only subjects. The results herein demonstrate that mononuclear cells therapy is neuroprotective by increasing levels of brain derived neurotrophic factor (BDNF) and glial derived neurotrophic factor (GDNF). Moreover, the use of fibrin sealant mononuclear cells delivery approach gave the best and more long lasting results.
Resumo:
We recently proposed a new surgical approach to treat ventral root avulsion, resulting in motoneuron protection. The present work combined such a surgical approach with bone marrow mononuclear cells (MC) therapy. Therefore, MC were added to the site of reimplantation. Female Lewis rats (seven weeks old) were subjected to unilateral ventral root avulsion (VRA) at L4, L5 and L6 levels and divided into the following groups (n = 5 for each group): Avulsion, sealant reimplanted roots and sealant reimplanted roots plus MC. After four weeks and 12 weeks post-surgery, the lumbar intumescences were processed by transmission electron microscopy, to analyze synaptic inputs to the repaired α motoneurons. Also, the ipsi and contralateral sciatic nerves were processed for axon counting and morphometry. The ultrastructural results indicated a significant preservation of inhibitory pre-synaptic boutons in the groups repaired with sealant alone and associated with MC therapy. Moreover, the average number of axons was higher in treated groups when compared to avulsion only. Complementary to the fiber counting, the morphometric analysis of axonal diameter and g ratio demonstrated that root reimplantation improved the motor component recovery. In conclusion, the data herein demonstrate that root reimplantation at the lesion site may be considered a therapeutic approach, following proximal lesions in the interface of central nervous system (CNS) and peripheral nervous system (PNS), and that MC therapy does not further improve the regenerative recovery, up to 12 weeks post lesion.
Resumo:
The broad use of transgenic and gene-targeted mice has established bone marrow-derived macrophages (BMDM) as important mammalian host cells for investigation of the macrophages biology. Over the last decade, extensive research has been done to determine how to freeze and store viable hematopoietic human cells; however, there is no information regarding generation of BMDM from frozen murine bone marrow (BM) cells. Here, we establish a highly efficient protocol to freeze murine BM cells and further generate BMDM. Cryopreserved murine BM cells maintain their potential for BMDM differentiation for more than 6 years. We compared BMDM obtained from fresh and frozen BM cells and found that both are similarly able to trigger the expression of CD80 and CD86 in response to LPS or infection with the intracellular bacteria Legionella pneumophila. Additionally, BMDM obtained from fresh or frozen BM cells equally restrict or support the intracellular multiplication of pathogens such as L. pneumophila and the protozoan parasite Leishmania (L.) amazonensis. Although further investigation are required to support the use of the method for generation of dendritic cells, preliminary experiments indicate that bone marrow-derived dendritic cells can also be generated from cryopreserved BM cells. Overall, the method described and validated herein represents a technical advance as it allows ready and easy generation of BMDM from a stock of frozen BM cells.
Resumo:
Background: Mast cells have recently gained new importance as immunoregulatory cells that are involved in numerous pathological processes. One result of these processes is an increase in mast cell numbers at peripheral sites. This study was undertaken to determine the mast cell response in the peritoneal cavity and bone marrow during repopulation of the peritoneal cavity in rats. Results: Two mast cell specific antibodies, mAb AA4 and mAb BGD6, were used to distinguish the committed mast cell precursor from more mature mast cells. The peritoneal cavity was depleted of mast cells using distilled water. Twelve hours after distilled water injection, very immature mast cells could be isolated from the blood and by 48 hours were present in the peritoneal cavity. At this same time the percentage of mast cells in mitosis increased fourfold. Mast cell depletion of the peritoneal cavity also reduced the total number of mast cells in the bone marrow, but increased the number of mast cell committed precursors. Conclusions: In response to mast cell depletion of the peritoneal cavity, a mast cell progenitor is released into the circulation and participates in repopulation of the peritoneal cavity, while the committed mast cell precursor is retained in the bone marrow.
Resumo:
Background: The D-mannose binding lectin ArtinM is known to recruit neutrophils, to degranulate mast cells and may have potential therapeutic applications. However, the effect of ArtinM on mast cell recruitment has not been investigated. Methodology: Male Wistar rats were injected i.p. with ArtinM or ConA (control). The ability of the lectin to degranulate peritoneal and mesenteric mast cells was examined. Recruitment of mast cells to the peritoneal cavity and mesentery after ArtinM injection was examined with or without depletion of peritoneal mast cells by distilled water. Results: ArtinM degranulated both peritoneal and mesentery mast cells in vitro. Three days after i.p. injection of the lectin there were reduced numbers of mast cells in the peritoneal lavage, while at 7 days post injection of ArtinM, the number of peritoneal mast cells was close to control values. Since immature mast cells are recruited from the bone marrow, the effect of the lectin on bone marrow mast cells was examined. Injection of ArtinM resulted in an increased number of mast cells in the bone marrow. To determine if degranulation of mast cells in the peritoneal cavity was required for the increase in bone marrow mast cells, the peritoneal cavity was depleted of mast cells with ultrapure water. Exposure to ArtinM increased the number of mast cells in the bone marrow of rats depleted of peritoneal mast cells. Conclusions: The ArtinM induced recruitment of mast cells from the bone marrow to the peritoneal cavity may partially explain the therapeutic actions of ArtinM.
Resumo:
Purpose: To evaluate the expression of NF-kappa B pathway genes in total bone marrow samples obtained from MM at diagnosis using real-time quantitative PCR and to evaluate its possible correlation with disease clinical features and survival. Material and methods: Expression of eight genes related to NF-kappa B pathway (NFKB1, IKB, RANK, RANKL, OPG, IL6, VCAM1 and ICAM1) were studied in 53 bone marrow samples from newly diagnosed MM patients and in seven normal controls, using the Taqman system. Genes were considered overexpressed when tumor expression level was at least four times higher than that observed in normal samples. Results: The percentages of overexpression of the eight genes were: NFKB1 0%, IKB 22.6%, RANK 15.1%, RANKL 31.3%, OPG 7.5%, IL6 39.6%, VCAM1 10% and ICAM1 26%. We found association between IL6 expression level and International Staging System (ISS) (p = 0.01), meaning that MM patients with high ISS scores have more chance of overexpression of IL6. The mean value of ICAM1 relative expression was also associated with the ISS score (p = 0.02). Regarding OS, cases with IL6 overexpression present worse evolution than cases with IL6 normal expression (p = 0.04). Conclusion: We demonstrated that total bone marrow aspirates can be used as a source of material for gene expression studies in MM. In this context, we confirmed that IL6 overexpression was significantly associated with worse survival and we described that it is associated with high ISS scores. Also, ICAM1 was overexpressed in 26% of cases and its level was associated with ISS scores.
Resumo:
During fetal development, mesenchymal progenitor (MP) cells are co-localized in major hematopoietic territories, such as yolk sac (YS), bone marrow (BM), liver (LV), and others. Studies using mouse and human MP cells isolated from fetus have shown that these cells are very similar but not identical to adult mesenchymal stem cells (MSC). Their differentiation potential is usually restricted to production of highly committed osteogenic and chondrogenic precursors. Such properties of fetal MP cells can be very useful for tissue regeneration, when a great number of committed precursors are required. The objectives of this study were to isolate and characterize MP cells from canine YS, BM, and LV in early and late stages of fetal development. Gestational stage was identified, and cell culture conditions were evaluated for efficient isolation of canine MP cells. All canine fetal MP cells expressed vimentin, nestin, and CD44 proteins. Cytokeratin 18 expression was observed in BM-and LV-MP cells, and vascular endothelial (VE)-cadherin expression was observed only in YS-MP cells. A small number of MP cells (5%) from LV and YS expressed Oct3/4 protein. The differentiation potential of canine fetal MP cells varied significantly: YS- and BM-MP cells differentiated into bone and cartilage, whereas LV-MP cells differentiation was limited to osteogenic fate. None of the canine fetal MP cells were able to differentiate into adipose cells. Our data suggest that canine fetal MP cells are an appropriate in vitro model to study MP biology from hematopoietic territories and they are a source of committed osteogenic and chondrogenic precursors for regenerative medicine.
Resumo:
Purpose: The purpose of this work was to evaluate the potential of substituting autogenous bone (AB) by bone marrow aspirate concentrate (BMAC). Both AB and BMAC were tested in combination with a bovine bone mineral (BBM) for their ability of new bone formation (NBF) in a multicentric, randomized, controlled, clinical and histological noninferiority trial. Materials and Methods: Forty-five severely atrophied maxillary sinus from 26 patients were evaluated in a partial cross-over design. As test arm, 34 sinus of 25 patients were augmented with BBM and BMAC containing mesenchymal stem cells. Eleven control sinus from 11 patients were augmented with a mixture of 70% BBM and 30% AB. Biopsies were obtained after a 3-4-month healing period at time of implant placement and histomorphometrically analyzed for NBF. Results: NBF was 14.3%+/- 1.8% for the control and nonsignificantly lower (12.6%+/- 1.7%) for the test (90% confidence interval: -4.6 to 1.2). Values for BBM (31.3%+/- 2.7%) were significantly higher for the test compared with control (19.3%+/- 2.5%) (p < 0.0001). Nonmineralized tissue was lower by 3.3% in the test compared with control (57.6%; p = 0.137). Conclusions: NBF after 3-4 months is equivalent in sinus, augmented with BMAC and BBM or a mixture of AB and BBM. This technique could be an alternative for using autografts to stimulate bone formation.
Resumo:
This work aimed to evaluate cardiac morphology/function and histological changes induced by bone marrow cells (BMCs) and cultured mesenchymal stem cells (MSCs) injected at the myocardium of spontaneously hypertensive rats (SHR) submitted to surgical coronary occlusion. Female syngeneic adult SHR, submitted (MI) or not (C) to coronary occlusion, were treated 24 h later with in situ injections of normal medium (NM), or with MSCs (MSC) or BMCs (BM) from male rats. The animals were evaluated after 1 and 30 days by echocardiography, histology of heart sections and PCR for the Y chromosome. Improved ejection fraction and reduced left ventricle infarcted area were observed in MSC rats as compared to the other experimental groups. Treated groups had significantly reduced lesion tissue score, increased capillary density and normal (not-atrophied) myocytes, as compared to NM and C groups. The survival rate was higher in C, NM and MSC groups as compared to MI and BM groups. In situ injection of both MSCs and BMCs resulted in improved cardiac morphology, in a more physiological model of myocardial infarction represented by surgical coronary occlusion of spontaneously hypertensive rats. Only treatment with MSCs, however, ameliorated left ventricle dysfunction, suggesting a positive role of these cells in heart remodeling in infarcted hypertensive subjects.
Resumo:
Objective: Protein-energy malnutrition (PEM) is an important public health problem affecting millions of people worldwide. Hematopoietic tissue requires a high nutrient supply, and a reduction in leukocytes, especially lymphocytes, suggests that some nutritional deficiencies might be altering bone marrow function and decreasing its ability to produce lymphocytes. In this study, we evaluated the effect that PEM has on lymphocyte subtypes and the cell cycle of CD5(+) cells. Methods: Swiss mice were subjected to PEM using a low-protein diet containing 4% protein. When the experimental group had lost about 20% of their original body weight, we collected blood and bone marrow cells and evaluated the hemogram, the myelogram, bone marrow lymphoid markers using flow cytometry, and the cell cycle in CD5(+) bone marrow. Results: Malnourished animals presented anemia, reticulocytopenia, and leukopenia with lymphopenia. The bone marrow was hypocellular, and flow cytometric analyses of bone marrow cells showed cells that were CD45(+) (91.2%), CD2(+) (84.9%), CD5(+) (37.3%), CD3(+) (23.5%), CD19(+) (43.3%), CD22(+) (34.7%), CD19(+)/CD2(+) (51.2%), CD19(+)/CD3(+)(24.0%), CD19(+)/CD5(+) (13.2%), CD22(+)/CD2(+) (40.1%), CD22(+)/CD3(+) (30.3%), and CD22(+)/CD5(+) (1.1%) in malnourished animals and CD45(+) (97.5%), CD2(+) (42.9%), CD5(+) (91.5%), CD3(+) (92.0%), CD19(+) (52.0%), CD22(+) (75.6%), CD19(+)/CD2(+) (62.0%), CD19(+)/CD3(+) (55.4%), CD19(+)/CO5(+) (6.7%), CD22(+)/CD2(+) (70.3%), CD22(+)/CD3(+) (55.9%), and CD22(+)/ CD5(+) (8.4%) in control animals. Malnourished animals also presented more CD5(+) cells in the G0 phase of cell cycle development. Conclusion: Malnourished animals presented bone marrow hypoplasia, maturation interruption, prominent lymphopenia with depletion in the lymphoid lineage, and changes in cellular development. We suggest that these changes are some of the primary causes of lymphopenia in cases of PEM and partly explain the increase in susceptibility to infections found in malnourished individuals. Published by Elsevier Inc.
Resumo:
Objective: Looking for possible neuroimmune relationships, we analyzed the effects of methylenedioxymethamphetamine (MDMA) administration on neuroendocrine, neutrophil activity and leukocyte distribution in mice. Methods: Five experiments were performed. In the first, mice were treated with MDMA (10 mg/kg) 30, 60 min and 24 h prior to blood sample collection for neutrophil activity analysis. In the second experiment, the blood of nave mice was collected and incubated with MDMA for neutrophil activity in vitro analysis. In the third and fourth experiments, mice were injected with MDMA (10 mg/kg) and 60 min later, blood and brain were collected to analyze corticosterone serum levels and hypothalamic noradrenaline (NA) levels and turnover. In the last experiment, mice were injected with MDMA 10 mg/kg and 60 min later, blood, bone marrow and spleen were collected for leukocyte distribution analysis. Results: Results showed an increase in hypothalamic NA turnover and corticosterone serum levels 60 min after MDMA (10 mg/kg) administration, a decrease in peripheral blood neutrophil oxidative burst and a decrease in the percentage and intensity of neutrophil phagocytosis. It was further found that MDMA (10 mg/kg) treatment also altered leukocyte distribution in blood, bone marrow and spleen. In addition, no effects were observed for MDMA after in vitro exposure both in neutrophil oxidative burst and phagocytosis. Conclusion: The effects of MDMA administration (10 mg/kg) on neutrophil activity and leukocyte distribution might have been induced indirectly through noradrenergic neurons and/or hypothalamic-pituitary-adrenal axis activations. Copyright (C) 2009 S. Karger AG, Basel
Resumo:
The aim of this study was to verify the capacity of the extracellular matrix (ECM) obtained from bone marrow of malnourished mice to sustain survival and to induce the proliferation of myeloid cells. We also verified the capacity of the tests to interact with in vitro hematopoietic cytokines. Male ""Swiss"" mice were submitted to protein malnutrition with a diet contents of 4% casein until they lost 20% of the original weight, while the group-control was kept with a diet content of 14% of casein. The bone marrow was extracted with 1.0 mg of aprotinin/mL in PBS. The proliferation tests were carried out with myeloid cell line FDCP-1, by the colorimetric method of reduction of the MTT. The obtained ECM from nourished and undernourished mice induced cellular proliferation in vitro. Tests performed with Il-3 and GM-CSF cytokines in a concentration of 10 and 500 rho g/mL displayed synergic and regulatory effects respectively. The ECM obtained from the malnourished group submitted to the binding to GM-CSF demonstrated higher cellular proliferation than the ECM obtained from the control group (p<0.05). The results suggest that the alterations in the composition of ECM of bone marrow caused by malnutrition might lead to modification of the GM-CSF activity modulation.
Resumo:
Vitamin B(6) has shown to be a potentially effective antioxidant agent, and dietary antioxidants are also frequently valuable inhibitors of clastogenesis and carcinogenesis. The purpose of the present work was to study the clastogenicity of different doses of vitamin B6 and to examine the possible modulating effect of this vitamin on chromosomal damage induced by the antitumor agent doxorubicin in Wistar rats. Experimental groups were set up for pre-and simultaneous treatment with vitamin B6 alone or in combination with DXR. The data obtained from administering diVerent doses of vitamin B(6) (12.5-100 mg/kg b. w.) showed no signigicant increase in total chromosomal aberrations when compared with the negative control. The administration of two doses of 25 mg/kg b. w. or one dose of 50 mg/kg b. w. of vitamin B6 before doxorubicin injection seemed equally effective in protecting cells against doxorubicin clastogenicity. The anticlastogenic effect of vitamin B(6) on DXR-induced chromosomal damage could be ascribed to its antioxidant properties. Vitamin B6 was not clastogenic or cytotoxic in rat bone marrow cells and it plays a role in inhibiting the clastogenicity induced by DXR.