1000 resultados para bona species
Resumo:
The discovery of two atypical specimens of Rhodnius pictipes Stål, 1872 in French Guiana and the examination of the female holotype of R. amazonicus Almeida, Santos & Sposina, 1973, the only specimen of this species so far known, lead us to propose the rehabilitation of R. amazonicus synonymized with R. pictipes. The male is described for the first time and the female redescribed. Both external characters and genitalia distinguish R. amazonicus from R. pictipes. R. amazonicus shows affinities not only with pictipes but also with R. stali Lent, Jurberg & Galvão, 1993 and R. paraensis Sherlock, Guitton & Miles, 1977. A key is provided for these four species forming, in all likelihood, a natural group, i.e. the "pictipes group".
Resumo:
Comparing introduced to ancestral populations within a phylogeographical context is crucial in any study aiming to understand the ecological genetics of an invasive species. Zaprionus indianus is a cosmopolitan drosophilid that has recently succeeded to expand its geographical range upon three continents (Africa, Asia and the Americas). We studied the distribution of mitochondrial DNA (mtDNA) haplotypes for two genes (CO-I and CO-II) among 23 geographical populations. mtDNA revealed the presence of two well-supported phylogenetic lineages (phylads), with bootstrap value of 100%. Phylad I included three African populations, reinforcing the African-origin hypothesis of the species. Within phylad II, a distinct phylogeographical pattern was discovered: Atlantic populations (from the Americas and Madeira) were closer to the ancestral African populations than to Eastern ones (from Madagascar, Middle East and India). This means that during its passage from endemism to cosmopolitanism, Z. indianus exhibited two independent radiations, the older (the Eastern) to the East, and the younger (the Atlantic) to the West. Discriminant function analysis using 13 morphometrical characters was also able to discriminate between the two molecular phylads (93.34 +/- 1.67%), although detailed morphological analysis of male genitalia using scanning electron microscopy showed no significant differences. Finally, crossing experiments revealed the presence of reproductive barrier between populations from the two phylads, and further between populations within phylad I. Hence, a bona species status was assigned to two new, cryptic species: Zaprionus africanus and Zaprionus gabonicus, and both were encompassed along with Z. indianus and Zaprionus megalorchis into the indianus complex. The ecology of these two species reveals that they are forest dwellers, which explains their restricted endemic distribution, in contrast to their relative cosmopolitan Z. indianus, known to be a human-commensal. Our results reconfirm the great utility of mtDNA at both inter- and intraspecific analyses within the frame of an integrated taxonomical project.
Resumo:
The Convention on Biological Diversity (CBD) aims at the conservation of all three levels of biodiversity, that is, ecosystems, species and genes. Genetic diversity represents evolutionary potential and is important for ecosystem functioning. Unfortunately, genetic diversity in natural populations is hardly considered in conservation strategies because it is difficult to measure and has been hypothesised to co-vary with species richness. This means that species richness is taken as a surrogate of genetic diversity in conservation planning, though their relationship has not been properly evaluated. We tested whether the genetic and species levels of biodiversity co-vary, using a large-scale and multi-species approach. We chose the high-mountain flora of the Alps and the Carpathians as study systems and demonstrate that species richness and genetic diversity are not correlated. Species richness thus cannot act as a surrogate for genetic diversity. Our results have important consequences for implementing the CBD when designing conservation strategies.
Resumo:
The complexities involved in obtaining permits for field research using protected species continue to increase. In October 1988, Congress amended the Marine Mammal Protection Act (MMPA) to increase the documentation required to obtain a scientific research permit (PL 100-711). Applicants for scientific research permits must now submit “information indicating that the taking is required to further a bona fide scientific purpose and does not involve unnecessary duplication of research.”
Resumo:
Prosopis rubriflora and Prosopis ruscifolia are important species in the Chaquenian regions of Brazil. Because of the restriction and frequency of their physiognomy, they are excellent models for conservation genetics studies. The use of microsatellite markers (Simple Sequence Repeats, SSRs) has become increasingly important in recent years and has proven to be a powerful tool for both ecological and molecular studies. In this study, we present the development and characterization of 10 new markers for P. rubriflora and 13 new markers for P. ruscifolia. The genotyping was performed using 40 P. rubriflora samples and 48 P. ruscifolia samples from the Chaquenian remnants in Brazil. The polymorphism information content (PIC) of the P. rubriflora markers ranged from 0.073 to 0.791, and no null alleles or deviation from Hardy-Weinberg equilibrium (HW) were detected. The PIC values for the P. ruscifolia markers ranged from 0.289 to 0.883, but a departure from HW and null alleles were detected for certain loci; however, this departure may have resulted from anthropic activities, such as the presence of livestock, which is very common in the remnant areas. In this study, we describe novel SSR polymorphic markers that may be helpful in future genetic studies of P. rubriflora and P. ruscifolia.
Resumo:
The Atlantic rainforest species Ocotea catharinensis, Ocotea odorifera, and Ocotea porosa have been extensively harvested in the past for timber and oil extraction and are currently listed as threatened due to overexploitation. To investigate the genetic diversity and population structure of these species, we developed 8 polymorphic microsatellite markers for O. odorifera from an enriched microsatellite library by using 2 dinucleotide repeats. The microsatellite markers were tested for cross-amplification in O. catharinensis and O. porosa. The average number of alleles per locus was 10.2, considering all loci over 2 populations of O. odorifera. Observed and expected heterozygosities for O. odorifera ranged from 0.39 to 0.93 and 0.41 to 0.92 across populations, respectively. Cross-amplification of all loci was successfully observed in O. catharinensis and O. porosa except 1 locus that was found to lack polymorphism in O. porosa. Combined probabilities of identity in the studied Ocotea species were very low ranging from 1.0 x 10-24 to 7.7 x 10-24. The probability of exclusion over all loci estimated for O. odorifera indicated a 99.9% chance of correctly excluding a random nonparent individual. The microsatellite markers described in this study have high information content and will be useful for further investigations on genetic diversity within these species and for subsequent conservation purposes.
Resumo:
Since insect species are poikilothermic organisms, they generally exhibit different growth patterns depending on the temperature at which they develop. This factor is important in forensic entomology, especially for estimating postmortem interval (PMI) when it is based on the developmental time of the insects reared in decomposing bodies. This study aimed to estimate the rates of development, viability, and survival of immatures of Sarcophaga (Liopygia) ruficornis (Fabricius 1794) and Microcerella halli (Engel 1931) (Diptera: Sarcophagidae) reared in different temperatures: 10, 15, 20, 25, 30, and 35 ± 1 °C. Bovine raw ground meat was offered as food for all experimental groups, each consisting of four replicates, in the proportion of 2 g/larva. To measure the evolution of growth, ten specimens of each group were randomly chosen and weighed every 12 h, from initial feeding larva to pupae, and then discarded. Considering the records of weight gain, survival rates, and stability of growth rates, the range of optimum temperature for the development of S. (L.) ruficornis is between 20 and 35 °C, and that of M. halli is between 20 and 25 °C. For both species, the longest times of development were in the lowest temperatures. The survival rate at extreme temperatures (10 and 35 °C) was lower in both species. Biological data such as the ones obtained in this study are of great importance to achieve a more accurate estimate of the PMI.
Resumo:
The taxonomic status of a disjunctive population of Phyllomedusa from southern Brazil was diagnosed using molecular, chromosomal, and morphological approaches, which resulted in the recognition of a new species of the P. hypochondrialis group. Here, we describe P. rustica sp. n. from the Atlantic Forest biome, found in natural highland grassland formations on a plateau in the south of Brazil. Phylogenetic inferences placed P. rustica sp. n. in a subclade that includes P. rhodei + all the highland species of the clade. Chromosomal morphology is conservative, supporting the inference of homologies among the karyotypes of the species of this genus. Phyllomedusa rustica is apparently restricted to its type-locality, and we discuss the potential impact on the strategies applied to the conservation of the natural grassland formations found within the Brazilian Atlantic Forest biome in southern Brazil. We suggest that conservation strategies should be modified to guarantee the preservation of this species.
Resumo:
Recently, Physalaemus albifrons (Spix, 1824) was relocated from the Physalaemus cuvieri group to the same group as Physalaemus biligonigerus (Cope, 1861), Physalaemus marmoratus (Reinhardt & Lütken, 1862) and Physalaemus santafecinus Barrio, 1965. To contribute to the analysis of this proposition, we studied the karyotypes of Physalaemus albifrons, Physalaemus santafecinus and three species of the Physalaemus cuvieri group. The karyotype of Physalaemus santafecinus was found to be very similar to those of Physalaemus biligonigerus and Physalaemus marmoratus, which were previously described. A remarkable characteristic that these three species share is a conspicuous C-band that extends from the pericentromeric region almost to the telomere in the short arm of chromosome 3. This characteristic is not present in the Physalaemus albifrons karyotype and could be a synapomorphy of Physalaemus biligonigerus, Physalaemus marmoratus and Physalaemus santafecinus. The karyotype of Physalaemus santafecinus is also similar to those of Physalaemus marmoratus and Physalaemus biligonigerus owing to the presence of several terminal C-bands and the distal localization of the NOR in a small metacentric chromosome. In contrast, the Physalaemus albifrons karyotype has no terminal C-bands and its NOR is located interstitially in the long arm of submetacentric chromosome 8. The NOR-bearing chromosome of Physalaemus albifrons very closely resembles those found in Physalaemus albonotatus (Steindachner, 1864), Physalaemus cuqui Lobo, 1993 and some populations of Physalaemus cuvieri Fitzinger, 1826. Additionally, the Physalaemus albifrons karyotype has an interstitial C-band in chromosome 5 that has been exclusively observed in species of the Physalaemus cuvieri group. Therefore, we were not able to identify any chromosomal feature that supports the reallocation of Physalaemus albifrons.
Resumo:
Purified genomic DNA can be difficult to obtain from some plant species because of the presence of impurities such as polysaccharides, which are often co-extracted with DNA. In this study, we developed a fast, simple, and low-cost protocol for extracting DNA from plants containing high levels of secondary metabolites. This protocol does not require the use of volatile toxic reagents such as mercaptoethanol, chloroform, or phenol and allows the extraction of high-quality DNA from wild and cultivated tropical species.
Resumo:
Ecosystem engineering is increasingly recognized as a relevant ecological driver of diversity and community composition. Although engineering impacts on the biota can vary from negative to positive, and from trivial to enormous, patterns and causes of variation in the magnitude of engineering effects across ecosystems and engineer types remain largely unknown. To elucidate the above patterns, we conducted a meta-analysis of 122 studies which explored effects of animal ecosystem engineers on species richness of other organisms in the community. The analysis revealed that the overall effect of ecosystem engineers on diversity is positive and corresponds to a 25% increase in species richness, indicating that ecosystem engineering is a facilitative process globally. Engineering effects were stronger in the tropics than at higher latitudes, likely because new or modified habitats provided by engineers in the tropics may help minimize competition and predation pressures on resident species. Within aquatic environments, engineering impacts were stronger in marine ecosystems (rocky shores) than in streams. In terrestrial ecosystems, engineers displayed stronger positive effects in arid environments (e.g. deserts). Ecosystem engineers that create new habitats or microhabitats had stronger effects than those that modify habitats or cause bioturbation. Invertebrate engineers and those with lower engineering persistence (<1 year) affected species richness more than vertebrate engineers which persisted for >1 year. Invertebrate species richness was particularly responsive to engineering impacts. This study is the first attempt to build an integrative framework of engineering effects on species diversity; it highlights the importance of considering latitude, habitat, engineering functional group, taxon and persistence of their effects in future theoretical and empirical studies.
Resumo:
• We developed the first microsatellites for Passiflora setacea and characterized new sets of markers for P. edulis and P. cincinnata, enabling further genetic diversity studies to support the conservation and breeding of passion fruit species. • We developed 69 microsatellite markers and, in conjunction with assessments of cross-amplification using primers available from the literature, present 43 new polymorphic microsatellite loci for three species of Passiflora. The mean number of alleles per locus was 3.1, and the mean values of the expected and observed levels of heterozygosity were 0.406 and 0.322, respectively. • These microsatellite markers will be valuable tools for investigating the genetic diversity and population structure of wild and commercial species of passion fruit (Passiflora spp.) and may be useful for developing conservation and improvement strategies by contributing to the understanding of the mating system and hybridization within the genus.
Resumo:
• Microsatellite primers were developed for Orthophytum ophiuroides, a rupicolous bromeliad species endemic to neotropical rocky fields. These microsatellite loci will be used to investigate population differentiation and species cohesion in such fragmented environments. The loci were tested for cross-amplification in related bromeliad species. • Eleven polymorphic microsatellite markers were isolated and characterized from an enriched library of O. ophiuroides. The loci were tested on 42 individuals from two populations of this species. The number of alleles per locus ranged from three to nine and the expected and observed heterozygosities ranged from 0.167 to 0.870 and from 0.369 to 0.958, respectively. Seven loci successfully amplified in other related bromeliad species. • Our results suggest that the microsatellite loci developed here will be useful to assess genetic diversity and gene flow in O. ophiuroides for the investigation of population differentiation and species cohesion in neotropical mountainous habitats.
Resumo:
Spores of the tropical mosses Pyrrhobryum spiniforme, Neckeropsis undulata and N. disticha were characterized regarding size, number per capsule and viability. Chemical substances were analyzed for P. spiniforme and N. undulata spores. Length of sporophyte seta (spore dispersal ability) was analyzed for P. spiniforme. Four to six colonies per species in each site (lowland and highland areas of an Atlantic Forest; Serra do Mar State Park, Brazil) were visited for the collection of capsules (2008 - 2009). Neckeropsis undulata in the highland area produced the largest spores (ca. 19 µm) with the highest viability. The smallest spores were found in N. disticha in the lowland (ca. 13 µm). Pyrrhobryum spiniforme produced more spores per capsule in the highland (ca. 150,000) than in lowland (ca. 40,000); longer sporophytic setae in the lowland (ca. 64 mm) than in the highland (ca. 43 mm); and similar sized spores in both areas (ca. 16 µm). Spores of N. undulata and P. spiniforme contained lipids and proteins in the cytoplasm, and acid/neutral lipids and pectins in the wall. Lipid bodies were larger in N. undulata than in P. spiniforme. No starch was recorded for spores. Pyrrhobryum spiniforme in the highland area, different from lowland, was characterized by low reproductive effort, but presented many spores per capsule.
Resumo:
A new species of Pseudopaludicola is described from human-altered areas originally covered by Semideciduous Forest in northwestern state of São Paulo, southeastern Brazil. Morphologically, the new species differs from four species belonging to the P. pusilla group by the absence of either T-shaped terminal phalanges or toe tips expanded, and from all other congeners except P. canga and P. facureae by possessing an areolate vocal sac, with dark reticulation. The higher duration (300-700 ms) of each single, pulsed note (9-36 nonconcatenated pulses) that compose the call in the new species distinguishes it from all other 14 species of Pseudopaludicola with calls already described (10-290 ms). Absence of harmonics also differ the advertisement call of the new species from the call of its sister species P. facureae, even though these two species presented unexpected low genetic distances. Although we could not identify any single morphological character distinguishing the new species from P. facureae, a PCA and DFA performed using 12 morphometric variables evidenced significant size differences between these two species.