420 resultados para boiling
Resumo:
This research was a step towards the comprehension of the nano-particles interaction with bubbles created during boiling. It was aimed at solving the controversies of whether the heat transfer is enhanced or deteriorated during the boiling of the nanofluid. Experiments were conducted in normal gravity and reduced gravity environments on-board the European Space Agency Parabolic Flight Program. The local modification of the thermo-physical properties of the fluid and moreover the modification experienced in the liquid microlayer under the growing vapour bubble were the dominant factors in explaining the mechanisms of the boiling behaviour of the nanofluid.
Resumo:
A model has been developed to predict heat transfer rates and sizes of bubbles generated during nucleate pool boiling. This model assumes conduction and a natural convective heat transfer mechanism through the liquid layer under the bubble and transient conduction from the bulk liquid. The temperature of the bulk liquid in the vicinity of the bubble is obtained by assuming a turbulent natural convection process from the hot plate to the liquid bulk. The shape of the bubble is obtained by equilibrium analysis. The bubble departure condition is predicted by a force balance equation. Good agreement has been found between the bubble radii predicted by the present theory and the ones obtained experimentally.
Resumo:
The finite-difference form of the basic conservation equations in laminar film boiling have been solved by the false-transient method. By a judicious choice of the coordinate system the vapour-liquid interface is fitted to the grid system. Central differencing is used for diffusion terms, upwind differencing for convection terms, and explicit differencing for transient terms. Since an explicit method is used the time step used in the false-transient method is constrained by numerical instability. In the present problem the limits on the time step are imposed by conditions in the vapour region. On the other hand the rate of convergence of finite-difference equations is dependent on the conditions in the liquid region. The rate of convergence was accelerated by using the over-relaxation technique in the liquid region. The results obtained compare well with previous work and experimental data available in the literature.
Resumo:
For the successful performance of a granular filter medium, existing design guidelines, which are based on the particle size distribution (PSD) characteristics of the base soil and filter medium, require two contradictory conditions to be satisfied, viz., soil retention and permeability. In spite of the wider applicability of these guidelines, it is well recognized that (i) they are applicable to a particular range of soils tested in the laboratory, (ii) the design procedures do not include performance-based selection criteria, and (iii) there are no means to establish the sensitivity of the important variables influencing performance. In the present work, analytical solutions are developed to obtain a factor of safety with respect to soil-retention and permeability criteria for a base soil - filter medium system subjected to a soil boiling condition. The proposed analytical solutions take into consideration relevant geotechnical properties such as void ratio, permeability, dry unit weight, effective friction angle, shape and size of soil particles, seepage discharge, and existing hydraulic gradient. The solution is validated through example applications and experimental results, and it is established that it can be used successfully in the selection as well as design of granular filters and can be applied to all types of base soils.
Resumo:
This paper reports an experimental investigation of oscillating temperature field beneath a single isolated nucleation site using a non-invasive TLC (thermochromic liquid crystal) based thermography technique. Empirical correlations are presented to demonstrate the influence of system pressure and wall heat flux on different ebullition characteristics in the nucleate pool boiling regime of refrigerant R-134a. TLC transient response and two-phase flow structure are captured using synchronized, high resolution imaging. It is observed that the area of influence of nucleation site exhibits a two-part distinct transient behavior during the bubble growth period and broadens to a maximum of 1.57 times the bubble diameter at the instant of bubble departure. This is accompanied by a sharp fall of 2.5 degrees C in the local excess temperature at the nucleation site, which results in momentary augmentation (similar to 40%) in the local heat transfer coefficient at the nucleation origin. The enhanced heat transfer rate observed during the bubble peel-off event is primarily due to transient micro-convection in the wake of the retreating bubble. Further, the results indicate that a slight increase in system pressure from 813.6 to 882.5 kPa has no considerable effect on either the wall superheat or the overall heat transfer coefficient and ebullition frequency. In addition, correlations have been obtained for bubble Reynolds number, Jackob number and the dimensionless bubble generation frequency in terms of modified boiling number.
Resumo:
Since convective boiling or highly subcooled single-phase forced convection in micro-channels is an effective cooling mechanism with a wide range of applications, more experimental and theoretical studies are required to explain and verify the forced convection heat transfer phenomenon in narrow channels. In this experimental study, we model the convective boiling behavior of water with low latent heat substance Freon 113 (R-113), with the purpose of saving power consumption and visualizing experiments. Both heat transfer and pressure drop characteristics were measured in subcooled and saturated concentric narrow gap forced convection boiling. Data were obtained to qualitatively identify the effects of gap size, pressure, flow rate and wall superheat on boiling regimes and the transition between various regimes. Some significant differences from unconfined forced convection boiling were found,and also, the flow patterns in narrow vertical annulus tubes have been studied quantitatively.
Resumo:
Two research projects on pool boiling in microgravity have been conducted aboard the Chinese recoverable satellites. Ground-based experiments have also been performed both in normal gravity and in short-term microgravity in the Drop Tower Beijing. Steady boiling of R113 on thin platinum wires was studied with a temperature-controlled heating method, while quasi-steady boiling of FC-72 on a plane plate was investigated with an exponentially increasing heating voltage. In the first case, slight enhancement of heat transfer is observed in microgravity, while diminution is evident for high heat flux in the second one. Lateral motions of bubbles on the heaters are observed before their departure in microgravity. The surface oscillation of the merged bubbles due to lateral coalescence between adjacent bubbles drives it to detach from the heaters. The Marangoni effect on the bubble behavior is also discussed. The perspectives for a new project DEPA-SJ10, which has been planned to be flown aboard the Chinese recoverable satellite SJ-10 in the future, are also presented.
Resumo:
A temperature-controlled pool boiling (TCPB) device has been developed to study the bubble behavior and heat transfer in pool boiling phenomenon both in normal gravity and in microgravity. A thin platinum wire of 60 mu m in diameter and 30 mm in length is simultaneously used as heater and thermometer. The fluid is R113 at 0.1 MPa and subcooled by 26 degrees C nominally for all cases. Three modes of heat transfer, namely single-phase natural convection, nucleate boiling, and two-mode transition boiling, are observed in the experiment both in microgravity aboard the 22nd Chinese recoverable satellite and in normal gravity on the ground before and after the space flight. Dynamic behaviors of vapor bubbles observed in these experiments are reported and analyzed in the present paper. In the regime of fully developed nucleate boiling, the interface oscillation due to coalescence of adjacent tiny bubbles is the primary reason of the departure of bubbles in microgravity. On the contrary, in the discrete bubble regime, it's observed that there exist three critical bubble diameters in microgravity, dividing the whole range of the observed bubbles into four regimes. Firstly, tiny bubbles are continually forming and growing on the heating surface before departing slowly from the wire when their sizes exceed some value of the order of 10(-1) mm. The bigger bubbles with about several millimeters in diameter stay on the wire, oscillate along the wire, and coalesce with adjacent bubbles. The biggest bubble with diameter of the order of 10 mm, which was formed immediately after the onset of boiling, stays continuously
Resumo:
A temperature-controlled pool boiling (TCPB) device was developed to perform pool boiling heat transfer studies at both normal gravity on Earth and microgravity in the drop tower Beijing and aboard a Chinese recovery satellite. Two platinum wires of 60 ?m in diameter were simultaneously used as heaters and thermometers. The lengths were 30 mm and 40 mm, respectively. The ends of wires were soldered with copper poles to provide low resistance paths for the electric current. The heater resistance, and thus the heater temperature, was kept constant by a feedback circuit similar to that used in constant-temperature hot-wire anemometry. The fluid was R113 at 0.1 Mpa and subcooled by 30 ?C nominally for all cases. The results of the experiments at normal gravity were presented. Four modes, namely single-phase convection, nucleate boiling, transition two-mode boiling, and film boiling were observed. A few data obtained from several preliminary experiments at microgravity in the drop tower Beijing were also presented. A slight increase of the heat flux was obtained.
Resumo:
Resumo:
Two research projects on pool boiling in microgravity have been conducted aboard the Chinese recoverable satellites. Ground-based experiments have also been performed both in normal gravity and in short-term microgravity in the Drop Tower Beijing. Steady boiling of R113 on thin platinum wires was studied with a temperature-controlled heating method, while quasi-steady boiling of FC-72 on a plane plate was investigated with an exponentially increasing heating voltage. In the first case, slight enhancement of heat transfer is observed in microgravity, while diminution is evident for high heat flux in the second one. Lateral motions of bubbles on the heaters are observed before their departure in microgravity. The surface oscillation of the merged bubbles due to lateral coalescence between adjacent bubbles drives it to detach from the heaters. The Marangoni effect on the bubble behavior is also discussed. The perspectives for a new project DEPA-SJ10, which has been planned to be flown aboard the Chinese recoverable satellite SJ-10 in the future, are also presented.
Lateral motion and departure of vapor bubbles in nucleate pool boiling on thin wires in microgravity
Resumo:
A space experiment on bubble behavior and heat transfer in subcooled pool boiling phenomenon has been performed utilizing the temperature-controlled pool boiling (TCPB) device both in normal gravity in the laboratory and in microgravity aboard the 22(nd) Chinese recoverable satellite. The fluid is R113 at 0.1 MPa and subcooled by 26 degrees C nominally. A thin platinum wire of 60 mu m in diameter and 30mm in length is simultaneously used as heater and thermometer. Only the lateral motion and the departure of discrete vapor bubbles in nucleate pool boiling are reported and analyzed in the present paper. A scale analysis on the Marangoni convection surrounding a bubble in the process of subcooled nucleate pool boiling leads to formulas of the characteristic velocity of the lateral motion and its observability. The predictions consist with the experimental observations. Considering the Marangoni effect, a new qualitative model is proposed to reveal the mechanism underlying the bubble departure processes and a quantitative agreement can also be acquired.