956 resultados para body segment parameters
Resumo:
The accuracy of data derived from linked-segment models depends on how well the system has been represented. Previous investigations describing the gait of persons with partial foot amputation did not account for the unique anthropometry of the residuum or the inclusion of a prosthesis and footwear in the model and, as such, are likely to have underestimated the magnitude of the peak joint moments and powers. This investigation determined the effect of inaccuracies in the anthropometric input data on the kinetics of gait. Toward this end, a geometric model was developed and validated to estimate body segment parameters of various intact and partial feet. These data were then incorporated into customized linked-segment models, and the kinetic data were compared with that obtained from conventional models. Results indicate that accurate modeling increased the magnitude of the peak hip and knee joint moments and powers during terminal swing. Conventional inverse dynamic models are sufficiently accurate for research questions relating to stance phase. More accurate models that account for the anthropometry of the residuum, prosthesis, and footwear better reflect the work of the hip extensors and knee flexors to decelerate the limb during terminal swing phase.
Resumo:
Purpose. Clinicians commonly assess posture in persons with musculoskeletal disorders and tend to do so subjectively. Evidence-based practice requires the use of valid, reliable and sensitive tools to monitor treatment effectiveness. The purpose of this article was to determine which methods were used to assess posture quantitatively in a clinical setting and to identify psychometric properties of posture indices measured from these methods or tools. Methods. We conducted a comprehensive literature review. Pertinent databases were used to search for articles on quantitative clinical assessment of posture. Searching keywords were related to posture and assessment, scoliosis, back pain, reliability, validity and different body segments. Results. We identified 65 articles with angle and distance posture indices that corresponded to our search criteria. Several studies showed good intra- and inter-rater reliability for measurements taken directly on the persons (e.g., goniometer, inclinometer, flexible curve and tape measurement) or from photographs, but the validity of these measurements was not always demonstrated. Conclusion. Taking measurements of all body angles directly on the person is a lengthy process and may affect the reliability of the measurements. Measurement of body angles from photographs may be the most accurate and rapid way to assess global posture quantitatively in a clinical setting.
Resumo:
Purpose: To determine whether curve-fitting analysis of the ranked segment distributions of topographic optic nerve head (ONH) parameters, derived using the Heidelberg Retina Tomograph (HRT), provide a more effective statistical descriptor to differentiate the normal from the glaucomatous ONH. Methods: The sample comprised of 22 normal control subjects (mean age 66.9 years; S.D. 7.8) and 22 glaucoma patients (mean age 72.1 years; S.D. 6.9) confirmed by reproducible visual field defects on the Humphrey Field Analyser. Three 10°-images of the ONH were obtained using the HRT. The mean topography image was determined and the HRT software was used to calculate the rim volume, rim area to disc area ratio, normalised rim area to disc area ratio and retinal nerve fibre cross-sectional area for each patient at 10°-sectoral intervals. The values were ranked in descending order, and each ranked-segment curve of ordered values was fitted using the least squares method. Results: There was no difference in disc area between the groups. The group mean cup-disc area ratio was significantly lower in the normal group (0.204 ± 0.16) compared with the glaucoma group (0.533 ± 0.083) (p < 0.001). The visual field indices, mean deviation and corrected pattern S.D., were significantly greater (p < 0.001) in the glaucoma group (-9.09 dB ± 3.3 and 7.91 ± 3.4, respectively) compared with the normal group (-0.15 dB ± 0.9 and 0.95 dB ± 0.8, respectively). Univariate linear regression provided the best overall fit to the ranked segment data. The equation parameters of the regression line manually applied to the normalised rim area-disc area and the rim area-disc area ratio data, correctly classified 100% of normal subjects and glaucoma patients. In this study sample, the regression analysis of ranked segment parameters method was more effective than conventional ranked segment analysis, in which glaucoma patients were misclassified in approximately 50% of cases. Further investigation in larger samples will enable the calculation of confidence intervals for normality. These reference standards will then need to be investigated for an independent sample to fully validate the technique. Conclusions: Using a curve-fitting approach to fit ranked segment curves retains information relating to the topographic nature of neural loss. Such methodology appears to overcome some of the deficiencies of conventional ranked segment analysis, and subject to validation in larger scale studies, may potentially be of clinical utility for detecting and monitoring glaucomatous damage. © 2007 The College of Optometrists.
Resumo:
Introduction Calculating segmental torso masses in Adolescent Idiopathic Scoliosis (AIS) patients allows the gravitational loading on the scoliotic spine during relaxed standing to be estimated. Methods Low dose CT data was used to calculate vertebral level-by-level torso masses and spinal joint torques for 20 female AIS patients (mean age 15.0 ± 2.7 years, mean Cobb angle 53 ± 7.1°). ImageJ software (v1.45 NIH USA) was used to threshold the T1 to L5 CT images and calculate the segmental torso volume and mass for each vertebral level. Masses for the head, neck and arms were taken from published data.1 Intervertebral joint torques in the coronal and sagittal planes at each vertebral level were found from the position of the centroid of the segment masses relative to the joint centres (assumed to be at the centre of the intervertebral disc). The joint torque at each level was found by summing torque contributions for all segments above that joint. Results Segmental torso mass increased from 0.6kg at T1 to 1.5kg at L5. The coronal plane joint torques due to gravity were 5-7Nm at the apex of the curve; sagittal torques were 3-5.4Nm. Conclusion CT scans were in the supine position and curve magnitudes are known to be smaller than those in standing.2 Hence, this study has shown that gravity produces joint torques potentially of higher than 7Nm in the coronal plane and 5Nm in the sagittal plane during relaxed standing in scoliosis patients. The magnitude of these torques may help to explain the mechanics of AIS progression and the mechanics of bracing. This new data on torso segmental mass in AIS patients will assist biomechanical models of scoliosis.
Resumo:
Background Adolescent Idiopathic Scoliosis is the most common type of spinal deformity whose aetiology remains unclear. Studies suggest that gravitational forces in the standing position play an important role in scoliosis progression, therefore anthropometric data are required to develop biomechanical models of the deformity. Few studies have analysed the trunk by vertebral level and none have performed investigations of the scoliotic trunk. The aim of this study was to determine the centroid, thickness, volume and estimated mass, for sections of the trunk in Adolescent Idiopathic Scoliosis patients. Methods Existing low-dose Computed Tomography scans were used to estimate vertebral level-by-level torso masses for 20 female Adolescent Idiopathic Scoliosis patients. ImageJ processing software was used to analyse the Computed Tomography images and enable estimation of the segmental torso mass corresponding to each vertebral level. Findings The patients’ mean age was 15.0 (SD 2.7) years with mean major Cobb Angle of 52° (SD 5.9) and mean patient weight of 58.2 (SD 11.6) kg. The magnitude of torso segment mass corresponding to each vertebral level increased by 150% from 0.6kg at T1 to 1.5kg at L5. Similarly, the segmental thickness corresponding to each vertebral level from T1-L5 increased inferiorly from a mean 18.5 (SD 2.2) mm at T1 to 32.8 (SD 3.4) mm at L5. The mean total trunk mass, as a percentage of total body mass, was 27.8 (SD 0.5) % which was close to values reported in previous literature. Interpretation This study provides new anthropometric reference data on segmental (vertebral level-by-level) torso mass in Adolescent Idiopathic Scoliosis patients, useful for biomechanical models of scoliosis progression and treatment.
Resumo:
Cranial cruciate ligament (CCL) deficiency is the leading cause of lameness affecting the stifle joints of large breed dogs, especially Labrador Retrievers. Although CCL disease has been studied extensively, its exact pathogenesis and the primary cause leading to CCL rupture remain controversial. However, weakening secondary to repetitive microtrauma is currently believed to cause the majority of CCL instabilities diagnosed in dogs. Techniques of gait analysis have become the most productive tools to investigate normal and pathological gait in human and veterinary subjects. The inverse dynamics analysis approach models the limb as a series of connected linkages and integrates morphometric data to yield information about the net joint moment, patterns of muscle power and joint reaction forces. The results of these studies have greatly advanced our understanding of the pathogenesis of joint diseases in humans. A muscular imbalance between the hamstring and quadriceps muscles has been suggested as a cause for anterior cruciate ligament rupture in female athletes. Based on these findings, neuromuscular training programs leading to a relative risk reduction of up to 80% has been designed. In spite of the cost and morbidity associated with CCL disease and its management, very few studies have focused on the inverse dynamics gait analysis of this condition in dogs. The general goals of this research were (1) to further define gait mechanism in Labrador Retrievers with and without CCL-deficiency, (2) to identify individual dogs that are susceptible to CCL disease, and (3) to characterize their gait. The mass, location of the center of mass (COM), and mass moment of inertia of hind limb segments were calculated using a noninvasive method based on computerized tomography of normal and CCL-deficient Labrador Retrievers. Regression models were developed to determine predictive equations to estimate body segment parameters on the basis of simple morphometric measurements, providing a basis for nonterminal studies of inverse dynamics of the hind limbs in Labrador Retrievers. Kinematic, ground reaction forces (GRF) and morphometric data were combined in an inverse dynamics approach to compute hock, stifle and hip net moments, powers and joint reaction forces (JRF) while trotting in normal, CCL-deficient or sound contralateral limbs. Reductions in joint moment, power, and loads observed in CCL-deficient limbs were interpreted as modifications adopted to reduce or avoid painful mobilization of the injured stifle joint. Lameness resulting from CCL disease affected predominantly reaction forces during the braking phase and the extension during push-off. Kinetics also identified a greater joint moment and power of the contralateral limbs compared with normal, particularly of the stifle extensor muscles group, which may correlate with the lameness observed, but also with the predisposition of contralateral limbs to CCL deficiency in dogs. For the first time, surface EMG patterns of major hind limb muscles during trotting gait of healthy Labrador Retrievers were characterized and compared with kinetic and kinematic data of the stifle joint. The use of surface EMG highlighted the co-contraction patterns of the muscles around the stifle joint, which were documented during transition periods between flexion and extension of the joint, but also during the flexion observed in the weight bearing phase. Identification of possible differences in EMG activation characteristics between healthy patients and dogs with or predisposed to orthopedic and neurological disease may help understanding the neuromuscular abnormality and gait mechanics of such disorders in the future. Conformation parameters, obtained from femoral and tibial radiographs, hind limb CT images, and dual-energy X-ray absorptiometry, of hind limbs predisposed to CCL deficiency were compared with the conformation parameters from hind limbs at low risk. A combination of tibial plateau angle and femoral anteversion angle measured on radiographs was determined optimal for discriminating predisposed and non-predisposed limbs for CCL disease in Labrador Retrievers using a receiver operating characteristic curve analysis method. In the future, the tibial plateau angle (TPA) and femoral anteversion angle (FAA) may be used to screen dogs suspected of being susceptible to CCL disease. Last, kinematics and kinetics across the hock, stifle and hip joints in Labrador Retrievers presumed to be at low risk based on their radiographic TPA and FAA were compared to gait data from dogs presumed to be predisposed to CCL disease for overground and treadmill trotting gait. For overground trials, extensor moment at the hock and energy generated around the hock and stifle joints were increased in predisposed limbs compared to non predisposed limbs. For treadmill trials, dogs qualified as predisposed to CCL disease held their stifle at a greater degree of flexion, extended their hock less, and generated more energy around the stifle joints while trotting on a treadmill compared with dogs at low risk. This characterization of the gait mechanics of Labrador Retrievers at low risk or predisposed to CCL disease may help developing and monitoring preventive exercise programs to decrease gastrocnemius dominance and strengthened the hamstring muscle group.
Resumo:
The objective of this paper is to show an alternative methodology to estimate per unit length parameters of a line segment of a transmission line. With this methodology the line segment parameters can be obtained starting from the phase currents and -voltages in receiving and sending end of the line segment. If the line segment is represented as being one or more pi circuits whose frequency dependent parameters are considered lumped, its impedance and admittance can be easily expressed as functions of the currents and voltages at the sending and receiving end. Because we are supposing that voltages and currents at the sending and receiving end of the tine segment (in frequency domain) are known, it is possible to obtains its impedance and admittance and consequently its per unit length longitudinal and transversal parameters. The procedure will be applied to estimate the longitudinal and transversal parameters of a small segment of a single-phase line that is already built.
Resumo:
The objective of this paper is to show an alternative methodology to estimate per unit length parameters of a line segment of a transmission line. With this methodology the line segment parameters can be obtained starting from the phase currents and voltages in receiving and sending end of the line segment. If the line segment is represented as being one or more π circuits whose frequency dependent parameters are considered lumped, its impedance and admittance can be easily expressed as functions of the currents and voltages at the sending and receiving end. Because we are supposing that voltages and currents at the sending and receiving end of the line segment (in frequency domain) are known, it is possible to obtains its impedance and admittance and consequently its per unit length longitudinal and transversal parameters. The procedure will be applied to estimate the longitudinal and transversal parameters of a small segment of a single-phase line that is already built. © 2006 IEEE.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Finite Element Modeling (FEM) has become a vital tool in the automotive design and development processes. FEM of the human body is a technique capable of estimating parameters that are difficult to measure in experimental studies with the human body segments being modeled as complex and dynamic entities. Several studies have been dedicated to attain close-to-real FEMs of the human body (Pankoke and Siefert 2007; Amann, Huschenbeth et al. 2009; ESI 2010). The aim of this paper is to identify and appraise the state of-the art models of the human body which incorporate detailed pelvis and/or lower extremity models. Six databases and search engines were used to obtain literature, and the search was limited to studies published in English since 2000. The initial search results identified 636 pelvis-related papers, 834 buttocks-related papers, 505 thigh-related papers, 927 femur-related papers, 2039 knee-related papers, 655 shank-related papers, 292 tibia-related papers, 110 fibula-related papers, 644 ankle related papers, and 5660 foot-related papers. A refined search returned 100 pelvis-related papers, 45 buttocks related papers, 65 thigh-related papers, 162 femur-related papers, 195 kneerelated papers, 37 shank-related papers, 80 tibia-related papers, 30 fibula-related papers and 102 ankle-related papers and 246 foot-related papers. The refined literature list was further restricted by appraisal against a modified LOW appraisal criteria. Studies with unclear methodologies, with a focus on populations with pathology or with sport related dynamic motion modeling were excluded. The final literature list included fifteen models and each was assessed against the percentile the model represents, the gender the model was based on, the human body segment/segments included in the model, the sample size used to develop the model, the source of geometric/anthropometric values used to develop the model, the posture the model represents and the finite element solver used for the model. The results of this literature review provide indication of bias in the available models towards 50th percentile male modeling with a notable concentration on the pelvis, femur and buttocks segments.
Resumo:
Since ethnic differences exist in body composition, assessment methods need to be validated prior to use in different populations. This study attempts to validate the use of Sri Lankan based body composition assessment tools on a group of 5 - 15 year old Australian children of Sri Lankan origin. The study was conducted at the Body Composition Laboratory of the Children’s Nutrition Research Centre at the Royal Children’s Hospital, Brisbane, Australia. Height (Ht), weight (Wt), segmental length (Lsegment name) and skinfold thickness (SFT) were measured. The whole body and segmental bio impedance analysis (BIA) were also measured. The body composition determined by the deuterium dilution technique (criterion method) was compared with the assessments done using prediction equations developed on Sri Lankan children. 27 boys and 15 girls were studied. All predictions of body composition parameters, except percentage fat mass (FM) assessed by the SFT-FM equation in girls gave statistically significant correlations with the criterion method. They had a low mean bias and most were not influenced by the measured parameter. Although living in a different socioeconomic state, the equations developed on children of the same ethnic background gives a better predictive value of body composition. This highlights the ethnic influence on body composition.
Resumo:
PURPOSE: To compare anterior segment parameters between eyes of Chinese and Caucasians using anterior segment optical coherence tomography and to evaluate the association between these parameters and anterior chamber angle width between the two ethnic groups. METHODS: 60 Chinese and 60 Caucasians, 30 with open angles and 30 with narrow angles (defined as Shaffer grade < or =2 in > or =3 quadrants during dark room gonioscopy) in each group, were consecutively enrolled. One eye of each subject was randomly selected for imaging in a completely darkened room. Measurements, including anterior chamber depth (ACD), scleral spur-to-scleral spur distance (anterior chamber width (ACW)), anterior chamber angle width, iris convexity and iris thickness, were compared between the groups. The associations between angle opening distance and biometric measurements were evaluated with univariate and multivariate regression analyses. RESULTS: There were no differences in age, axial length, anterior chamber angle measurements, pupil diameter and iris convexity between Chinese and Caucasians in both open-angle and narrow-angle groups. However, the ACD and ACW were smaller and the iris was thicker in Chinese. In the multivariate analysis, the ACD was the most influential biometric parameter for angle opening distance in both Chinese and Caucasians. After adjusting the effects of axial length, age and sex, ACD and ACW were significantly smaller in Chinese. CONCLUSIONS: Chinese eyes had smaller ACD, smaller ACW and greater iris thickness than Caucasians. ACD was the most influential parameter in determining the angle width in both ethnic groups.
Resumo:
The effects of four levels of dietary ractopamine (RAC) on growth, body composition and hematology of pacu, Piaractus mesopotamicus juveniles (103.6+/-3.3g) were studied. Fish were housed into 12 circular tanks of 1 m(3) - 15 fish per tank - and fed for 60 days with practical diets supplemented with 0; 10; 20 or 40mg RAC per kg of diet, in a totally randomized design trial (n=3). Fish fed diets containing up to 40mg RAC/kg diet for 60 days did not have improved growth or body composition parameters. There were no significant differences in hematocrit, hemoglobin and mean corpuscular hemoglobin. Plasma glucose and triglycerides were significantly smaller in fish fed with RAC; however no significant differences between RAC levels were detected. The inclusion of up to 40mg RAC/kg of diet did not improve growth and body composition, but influenced some hematological and biochemical parameters of juvenile pacu.
Resumo:
Human reactions to vibration have been extensively investigated in the past. Vibration, as well as whole-body vibration (WBV), has been commonly considered as an occupational hazard for its detrimental effects on human condition and comfort. Although long term exposure to vibrations may produce undesirable side-effects, a great part of the literature is dedicated to the positive effects of WBV when used as method for muscular stimulation and as an exercise intervention. Whole body vibration training (WBVT) aims to mechanically activate muscles by eliciting neuromuscular activity (muscle reflexes) via the use of vibrations delivered to the whole body. The most mentioned mechanism to explain the neuromuscular outcomes of vibration is the elicited neuromuscular activation. Local tendon vibrations induce activity of the muscle spindle Ia fibers, mediated by monosynaptic and polysynaptic pathways: a reflex muscle contraction known as the Tonic Vibration Reflex (TVR) arises in response to such vibratory stimulus. In WBVT mechanical vibrations, in a range from 10 to 80 Hz and peak to peak displacements from 1 to 10 mm, are usually transmitted to the patient body by the use of oscillating platforms. Vibrations are then transferred from the platform to a specific muscle group through the subject body. To customize WBV treatments, surface electromyography (SEMG) signals are often used to reveal the best stimulation frequency for each subject. Use of SEMG concise parameters, such as root mean square values of the recordings, is also a common practice; frequently a preliminary session can take place in order to discover the more appropriate stimulation frequency. Soft tissues act as wobbling masses vibrating in a damped manner in response to mechanical excitation; Muscle Tuning hypothesis suggest that neuromuscular system works to damp the soft tissue oscillation that occurs in response to vibrations; muscles alters their activity to dampen the vibrations, preventing any resonance phenomenon. Muscle response to vibration is however a complex phenomenon as it depends on different parameters, like muscle-tension, muscle or segment-stiffness, amplitude and frequency of the mechanical vibration. Additionally, while in the TVR study the applied vibratory stimulus and the muscle conditions are completely characterised (a known vibration source is applied directly to a stretched/shortened muscle or tendon), in WBV study only the stimulus applied to a distal part of the body is known. Moreover, mechanical response changes in relation to the posture. The transmissibility of vibratory stimulus along the body segment strongly depends on the position held by the subject. The aim of this work was the investigation on the effects that the use of vibrations, in particular the effects of whole body vibrations, may have on muscular activity. A new approach to discover the more appropriate stimulus frequency, by the use of accelerometers, was also explored. Different subjects, not affected by any known neurological or musculoskeletal disorders, were voluntarily involved in the study and gave their informed, written consent to participate. The device used to deliver vibration to the subjects was a vibrating platform. Vibrations impressed by the platform were exclusively vertical; platform displacement was sinusoidal with an intensity (peak-to-peak displacement) set to 1.2 mm and with a frequency ranging from 10 to 80 Hz. All the subjects familiarized with the device and the proper positioning. Two different posture were explored in this study: position 1 - hack squat; position 2 - subject standing on toes with heels raised. SEMG signals from the Rectus Femoris (RF), Vastus Lateralis (VL) and Vastus medialis (VM) were recorded. SEMG signals were amplified using a multi-channel, isolated biomedical signal amplifier The gain was set to 1000 V/V and a band pass filter (-3dB frequency 10 - 500 Hz) was applied; no notch filters were used to suppress line interference. Tiny and lightweight (less than 10 g) three-axial MEMS accelerometers (Freescale semiconductors) were used to measure accelerations of onto patient’s skin, at EMG electrodes level. Accelerations signals provided information related to individuals’ RF, Biceps Femoris (BF) and Gastrocnemius Lateralis (GL) muscle belly oscillation; they were pre-processed in order to exclude influence of gravity. As demonstrated by our results, vibrations generate peculiar, not negligible motion artifact on skin electrodes. Artifact amplitude is generally unpredictable; it appeared in all the quadriceps muscles analysed, but in different amounts. Artifact harmonics extend throughout the EMG spectrum, making classic high-pass filters ineffective; however, their contribution was easy to filter out from the raw EMG signal with a series of sharp notch filters centred at the vibration frequency and its superior harmonics (1.5 Hz wide). However, use of these simple filters prevents the revelation of EMG power potential variation in the mentioned filtered bands. Moreover our experience suggests that the possibility of reducing motion artefact, by using particular electrodes and by accurately preparing the subject’s skin, is not easily viable; even though some small improvements were obtained, it was not possible to substantially decrease the artifact. Anyway, getting rid of those artifacts lead to some true EMG signal loss. Nevertheless, our preliminary results suggest that the use of notch filters at vibration frequency and its harmonics is suitable for motion artifacts filtering. In RF SEMG recordings during vibratory stimulation only a little EMG power increment should be contained in the mentioned filtered bands due to synchronous electromyographic activity of the muscle. Moreover, it is better to remove the artifact that, in our experience, was found to be more than 40% of the total signal power. In summary, many variables have to be taken into account: in addition to amplitude, frequency and duration of vibration treatment, other fundamental variables were found to be subject anatomy, individual physiological condition and subject’s positioning on the platform. Studies on WBV treatments that include surface EMG analysis to asses muscular activity during vibratory stimulation should take into account the presence of motion artifacts. Appropriate filtering of artifacts, to reveal the actual effect on muscle contraction elicited by vibration stimulus, is mandatory. However as a result of our preliminary study, a simple multi-band notch filtering may help to reduce randomness of the results. Muscle tuning hypothesis seemed to be confirmed. Our results suggested that the effects of WBV are linked to the actual muscle motion (displacement). The greater was the muscle belly displacement the higher was found the muscle activity. The maximum muscle activity has been found in correspondence with the local mechanical resonance, suggesting a more effective stimulation at the specific system resonance frequency. Holding the hypothesis that muscle activation is proportional to muscle displacement, treatment optimization could be obtained by simply monitoring local acceleration (resonance). However, our study revealed some short term effects of vibratory stimulus; prolonged studies should be assembled in order to consider the long term effectiveness of these results. Since local stimulus depends on the kinematic chain involved, WBV muscle stimulation has to take into account the transmissibility of the stimulus along the body segment in order to ensure that vibratory stimulation effectively reaches the target muscle. Combination of local resonance and muscle response should also be further investigated to prevent hazards to individuals undergoing WBV treatments.
Resumo:
Procedures for quantitative walking analysis include the assessment of body segment movements within defined gait cycles. Recently, methods to track human body motion using inertial measurement units have been suggested. It is not known if these techniques can be readily transferred to clinical measurement situations. This work investigates the aspects necessary for one inertial measurement unit mounted on the lower back to track orientation, and determine spatio-temporal features of gait outside the confines of a conventional gait laboratory. Apparent limitations of different inertial sensors can be overcome by fusing data using methods such as a Kalman filter. The benefits of optimizing such a filter for the type of motion are unknown. 3D accelerations and 3D angular velocities were collected for 18 healthy subjects while treadmill walking. Optimization of Kalman filter parameters improved pitch and roll angle estimates when compared to angles derived using stereophotogrammetry. A Weighted Fourier Linear Combiner method for estimating 3D orientation angles by constructing an analytical representation of angular velocities and allowing drift free integration is also presented. When tested this method provided accurate estimates of 3D orientation when compared to stereophotogrammetry. Methods to determine spatio-temporal features from lower trunk accelerations generally require knowledge of sensor alignment. A method was developed to estimate the instants of initial and final ground contact from accelerations measured by a waist mounted inertial device without rigorous alignment. A continuous wavelet transform method was used to filter and differentiate the signal and derive estimates of initial and final contact times. The technique was tested with data recorded for both healthy and pathologic (hemiplegia and Parkinson’s disease) subjects and validated using an instrumented mat. The results show that a single inertial measurement unit can assist whole body gait assessment however further investigation is required to understand altered gait timing in some pathological subjects.