1000 resultados para blast resistance
Resumo:
The gene Pi-ar confers resistance to Pyricularia grisea race IB-45 in a somaclone derived from immature panicles of the susceptible rice (Oryza sativa) cultivar Araguaia. RAPD technique was used to identify molecular markers linked to this gene utilizing bulked segregant analysis. Initially, the two parental DNAs from the resistant donor SC09 and 'Araguaia' were analyzed using random primers. Of the 240 primers tested, 203 produced amplification products. The two parental DNAs along with the resistant and susceptible bulks of F2 population were screened using 48 primers that differentiated resistant and susceptible parents. Even though eight primers differentiated the resistant bulk from the susceptible bulk, as well as somaclone SC09 and 'Araguaia', only one primer, OPC02 ('GTGAGGCGTC'), was found to be tightly linked (1.7cM) to the resistance gene of somaclone SC09.
Resumo:
Seven sources of resistance to the two predominant races IB-1 and IB-9 of the rice blast pathogen Pyricularia grisea were selected based on leaf blast reaction in tests conducted under controlled greenhouse conditions. Crosses involving resistant and susceptible parents were made to study the inheritance of the disease reaction for different sources of resistance. The F1 and F2 progenies of all crosses, including backcrosses to resistant and susceptible parents, were tested for reaction to leaf blast. The data showed that resistance is controlled by one to three genes that segregate independently in most of the donors. Non-allelic interaction among resistance genes, including dominant epistasis, was identified.
Resumo:
The degree of blast resistance of upland rice (Oryza sativa L.) cultivar Araguaia has decreased over time causing significant yield losses. The major objective of this study was to obtain blast (Pyricularia grisea) resistant somaclones, adapting greenhouse and field selection procedures. Rice blast resistance and agronomic traits were assessed in R2 to R6 generations derived from regenerant plants (R1) from immature panicles of Araguaia. The evaluation and selection procedures include testing of early segregating populations and fixed lines in the advanced generations, under natural field conditions, and artificial inoculations in the greenhouse, with prevalent races IB-1 and IB-9 of P. grisea. Somaclones with both vertical resistance and slow blasting resistance were obtained. Twenty of 31 somaclones developed with a high degree of vertical resistance and fan shaped plant type maintained resistance in field and blast nursery tests in the R6 generation. Greenhouse selection with two specific physiologic races yielded 44 somaclones with slow blasting resistance, similar plant type and yield potential as that of Araguaia.
Resumo:
Catastrophic failure from intentional terrorist attacks on surface transportation infrastructure could he detrimental to the society. In order to minimize the vulnerabilities and to ensure a safe transportation system, the issue of security for transportation structures, primarily bridges, which are subjected to man-made hazards is investigated in this study. A procedure for identifying and prioritizing "critical bridges" using a screening and prioritization processes is established. For each of the "critical" bridges, a systematic risk-based assessment approach is proposed that takes into account the combination of threat occurrence likelihood, its consequences, and the socioeconomic importance of the bridge. A series of effective security countermeasures are compiled in the four categories of deterrence, detection, defense and mitigation to help reduce the vulnerability of critical bridges. The concepts of simplified equivalent I-shape cross section and virtual materials are proposed for integration into a nonlinear finite element model, which helps assess the performance of reinforced concrete structures with and without composite retrofit or hardening measures under blast loading. A series of parametric studies are conducted for single column and two-column pier frame systems as well as for an entire bridge. The parameters considered include column height, column type, concrete strength, longitudinal steel reinforcement ratio, thickness, fiber angle and tensile strength of the fiber reinforced polymer (FRP) tube, shape of the cross section, damping ratio and different bomb sizes. The study shows the benefits of hardening with composites against blast loading. The effect of steel reinforcement on blast resistance of the structure is more significant than the effect of concrete compressive strength. Moreover, multiple blasts do not necessarily lead to a more severe destruction than a single detonation at a strategically vulnerable location on the bridges.
Hot spots for diversity of Magnaporthe oryzae physiological races in irrigated rice fields in Brazil
Resumo:
The objective of this work was to evaluate the Magnaporthe oryzae pathotype diversity in new commercial irrigated rice fields in the Araguaia River Valley, state of Tocantins, Brazil. The causal agent of rice blast has heavily affected rice production in the region. Despite the efforts of breeding programs, blast resistance breakdown has been recorded shortly after the release of new resistant cultivars developed for the region. Among the causes of resistance breakage is the capacity of the fungus to rapidly develop new pathotypes. A sample of 479 M. oryzae monosporic isolates was obtained and tested using the international rice blast differential set. Isolate collections were made in small areas designed as trap nurseries and in scattered sites in their vicinity. Analysis of 250 M. oryzae isolates from three trap nurseries indicated the presence of 45 international M. oryzae races belonging to seven pathotype groups (IA-IG). In the isolates tested, 61 M. oryzae pathotypes belonging to all but the IH group were detected. The new areas of irrigated rice in the Araguaia River Valley have the highest diversity of M. oryzae pathotypes reported so far in Brazil.
Resumo:
In the past 20 years, the rice-breeding program in Thailand had little success in developing new cultivars to replace Kao Dawk Mali 105 (KDML105) and Kao Khor 6 (RD6) for the tainted lowland rice environments. The main reason for the poor adoption of new cultivars by farmers is the susceptibility to diseases and unacceptable grain qualities. The conventional breeding program also takes at least 15 years from initial crossing to the release of new cultivars. A new breeding strategy can be established to shorten the period for cultivar improvement by using marker-assisted selection (MAS), rapid generations advance (RGA), and early generation testing in multi-locations for grain yield and qualities. Four generation of MAS backcross breeding were conducted to transfer genes and QTL for bacterial blight resistance (BLB), submergence tolerance (SUB), brown plant hopper resistance (BPH) and blast resistance (BL) into KDML105. Selected backcross lines, introgressed with target gene/QTL, were tolerant to SUB and resistant to BLB, BPH and BL. The agronomic performance and grain quality of these lines were as good as or better than KDML105.
Resumo:
In the past 20 years, the rice-breeding program in Thailand had little success in developing new cultivars to replace Kao Dawk Mali 105 (KDML105) and Kao Khor 6 (RD6). Main reason is a poor adoption of new cultivars by farmers due to poor adaptation of new cultivars to the rainfed environments, susceptibility to diseases and insect pests and unacceptable grain qualities. The conventional breeding program also takes at least 15 years for releasing new cultivars. New breeding strategy can be established to shorten period for cultivar improvement by using marker-assisted selection (MAS), rapid generations advance (RGA), early generation testing in multi-locations for grain yield and qualities. Four generation of MAS backcross breeding were conducted to transfer gene and QTL for bacterial blight resistance (BLB), submergence tolerance (SUB), brown planthopper resistance (BPH) and blast resistance (BL) into KDML105. Selected backcross lines, introgressed with target gene/QTL, were tolerant to SUB and resistant to BLB, BPH and BL. The agronomic performance and grain quality of these lines were as good as or better than KDML105.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Resistant varieties have been the preferred means to control Magnaporthe grisea, the causal organism of the rice blast disease. The objective of this study was to examine the degree of diversity of the pathogen in different rice growing regions of São Paulo State, Brazil. Blast samples collected from rice varieties in three different regions (Tremembé, Mococa and José Bonifácio) were analyzed for race structure employing the Japanese rice differentials. The highest degree of virulence diversity was observed in Tremembé with 22 different races in three different varieties. Furthermore, no resistance gene in the Japanese differentials was effective to all isolates of M. grisea from São Paulo State.
Resumo:
The objective of this work was to evaluate the resistance spectra of six elite breeding lines of rice, developed for improved yield and grain quality, in inoculation tests in the greenhouse and in the field. Forty-six isolates of Pyricularia grisea collected from the cultivar Primavera, 31 from the cultivar Maravilha and 19 from six elite breeding lines, totaling 96 were utilized for inoculations. Out of 11 international and 15 Brazilian pathotypes, IC-1, IB-9, and BD-16, respectively, were identified as most frequent isolates collected from the cultivar Primavera. The isolates retrieved from Maravilha belong to four international and 11 Brazilian pathotypes, the predominant ones being IB-9 and IB-49 and BB-1 and BB-21, respectively. Lines CNAs 8711 and CNAs 8983 showed resistant reaction to all test isolates from Maravilha, while CNAs 8983 was susceptible to three isolates of Primavera pertaining to the pathotype IC-1. A majority of isolates exhibiting compatible reaction to Primavera were incompatible to Maravilha and vice-versa.Field assessment of rice blast utilizing the area under disease progress curve as a criterion for measuring disease severity showed significant differences among the six breeding lines. The isolates of P. grisea exhibiting differential reaction on breeding lines can be utilized in pyramiding resistance genes in new upland rice cultivars.
Resumo:
Thirty-nine rice (Oryza sativa) hybrids and their restorers were assessed for vertical resistance to Pyricularia grisea in the rice blast nursery, and in artificial inoculation tests with two pathotypes, under controlled greenhouse conditions. The hybrids were developed from cytoplasmic genetic male sterile lines 046I and IR 58025A, derived from WA cytoplasm. In the rice blast nursery all hybrids showed susceptible reaction varying from 5 to 9. Compatible and incompatible leaf blast reactions of hybrids to two pathotypes, IC-1 and IB-45, were observed in inoculation tests. A majority of the hybrids were resistant when the restorer was resistant. However, seven of the 25 F1 hybrids exhibited susceptible reactions even when one of the parents was resistant to a pathotype. The partial resistance of 11 hybrids and their parents that showed compatible reactions to two pathotypes was analyzed. Differential interaction between isolates and genotypes was observed for partial resistance in relation to both disease severity and lesion number indicating the specific nature of partial resistance.
Resumo:
Seventy-two monoconidial isolates of Magnaporthe grisea were obtained from the States of Mato Grosso do Sul and Paraná. The isolates were inoculated on seedlings of 20 wheat (Triticum aestivum) cultivars under greenhouse conditions. The virulence diversity of M. grisea was assessed based on compatible and incompatible reactions of leaf blast on wheat cultivars. Fifty-four distinct virulence patterns were identified on test cultivars among the isolates collected from the two wheat growing States. Sixteen of these isolates corresponding to 22.2% showed similar virulence pattern. None of the wheat cultivars was resistant to all isolates of M. grisea, but the cultivars differed in degree of resistance as measured by the relative spectrum of resistance (RSR) and disease index (DI). Among the cultivars the RSR ranged from 0 to 53.3% and DI from 0.4662 to 0.9662 (0 to 1 scale). The wheat cultivar BR18 exhibited a broad resistance spectrum in relation to the rest of the tested cultivars to the isolates of M. grisea, and can be used in wheat resistance breeding.
Resumo:
Freezing of poultry cuts in continuous convective air blast tunnels is normally performed with the products protected by Low Density Polyethylene (LDPE) as a primary packaging and using Corrugated Cardboard Boxes (CCB) as secondary packaging. The objective of this work was to investigate the influence of these secondary packaging on the freezing of poultry cuts in continuous convective air blast tunnels. The study was performed by replacing CCB with Perforated Metal Boxes (PMB) in order to remove the packaging thermal resistance. The assays, performed in a industrial plant, demonstrated that CCB used commercially for meat freezing have a high heat transfer resistance. Their replacement with PMB can lead to shorter freezing times and spatially homogeneous freezing. Reductions of up to 45% in the freezing times were observed using PMB. The plateau of the temperature curve, related to the freezing time of free water, was significantly reduced using PMB, which is accepted to lead to better product quality after thawing. As the products were protected by the LDPE films as primary packaging, their appearance were not affected. The results presented in this work indicate that replacing CBB with PMB can be an excellent alternative to reduce freezing time and improve freezing homogeneity in industrial air blast tunnels, which could also be applied to other products.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)