955 resultados para bladder epithelium
Resumo:
Urinary tract infections (UTIs) are typically caused by bacteria that colonize different regions of the urinary tract, mainly the bladder and the kidney. Approximately 25% of women that suffer from UTIs experience a recurrent infection within 6 months of the initial bout, making UTIs a serious economic burden resulting in more than 10 million hospital visits and $3.5 billion in healthcare costs in the United States alone. Type-1 fimbriated Uropathogenic E. coli (UPEC) is the major causative agent of UTIs, accounting for almost 90 % of bacterial UTIs. The unique ability of UPEC to bind and invade the superficial bladder epithelium allows the bacteria to persist inside epithelial niches and survive antibiotic treatment. Persistent, intracellular UPEC are retained in the bladder epithelium for long periods, making them a source of recurrent UTIs. Hence, the ability of UPEC to persist in the bladder is a matter of major health and economic concern, making studies exploring the underlying mechanism of UPEC persistence highly relevant.
In my thesis, I will describe how intracellular Uropathogenic E.coli (UPEC) evade host defense mechanisms in the superficial bladder epithelium. I will also describe some of the unique traits of persistent UPEC and explore strategies to induce their clearance from the bladder. I have discovered that the UPEC virulence factor Alpha-hemolysin (HlyA) plays a key role in the survival and persistence of UPEC in the superficial bladder epithelium. In-vitro and in-vivo studies comparing intracellular survival of wild type (WT) and hemolysin deficient UPEC suggested that HlyA is vital for UPEC persistence in the superficial bladder epithelium. Further in-vitro studies revealed that hemolysin helped UPEC persist intracellularly by evading the bacterial expulsion actions of the bladder cells and remarkably, this virulence factor also helped bacteria avoid t degradation in lysosomes.
To elucidate the mechanistic basis for how hemolysin promotes UPEC persistence in the urothelium, we initially focused on how hemolysin facilitates the evasion of UPEC expulsion from bladder cells. We found that upon entry, UPEC were encased in “exocytic vesicles” but as a result of HlyA expression these bacteria escaped these vesicles and entered the cytosol. Consequently, these bacteria were able to avoid expulsion by the cellular export machinery.
Since bacteria found in the cytosol of host cells are typically recognized by the cellular autophagy pathway and transported to the lysosomes where they are degraded, we explored why this was not the case here. We observed that although cytosolic HlyA expressing UPEC were recognized and encased by the autophagy system and transported to lysosomes, the bacteria appeared to avoid degradation in these normally degradative compartments. A closer examination of the bacteria containing lysosomes revealed that they lacked V-ATPase. V-ATPase is a well-known proton pump essential for the acidification of mammalian intracellular degradative compartments, allowing for the proper functioning of degradative proteases. The absence of V-ATPase appeared to be due to hemolysin mediated alteration of the bladder cell F-actin network. From these studies, it is clear that UPEC hemolysin facilitates UPEC persistence in the superficial bladder epithelium by helping bacteria avoid expulsion by the exocytic machinery of the cell and at the same time enabling the bacteria avoid degradation when the bacteria are shuttled into the lysosomes.
Interestingly even though UPEC appear to avoid elimination from the bladder cell their ability to multiple in bladder cells seem limited.. Indeed, our in-vitro and in-vivo experiments reveal that UPEC survive in superficial bladder epithelium for extended periods of time without a significantly change in CFU numbers. Indeed, we observed these bacteria appeared quiescent in nature. This observation was supported by the observation that UPEC genetically unable to enter a quiescence phase exhibited limited ability to persist in bladder cells in vitro and in vivo, in the mouse bladder.
The studies elucidated in this thesis reveal how UPEC toxin, Alpha-hemolysin plays a significant role in promoting UPEC persistence via the modulation of the vesicular compartmentalization of UPEC at two different stages of the infection in the superficial bladder epithelium. These results highlight the importance of UPEC Alpha-hemolysin as an essential determinant of UPEC persistence in the urinary bladder.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The sediment from urinary bladder washings from 63 consecutive autopsies was cytologically studied in order to achieve a better understanding of the changes in urothelial cells collected from hospital populations. The observed alterations were correlated with alterations in the urinary system and with therapy preceding death. The specimens obtained were of good quality. In 39.7% of the cases, the sediment contained giant superficial multinucleated cells. Three of nine cases previously subjected to radiation or chemotherapy showed atypical urothelial cells. In three cases with immunosuppression, there was cytologic evidence of subclinical infection by polyomavirus, and virus particles were identified by electron microscopy of the vesical mucosa. The study of the smear background offered additional information: the sediment contained hyaline or hematic or hyaline-cellular casts in 17.4% of the cases, in all of which there were renal tubulopathies when the kidney sections were studied. The method is useful for a good evaluation of the autopsy as well as for training in urinary cytopathology.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Bladder infections affect millions of people yearly, and recurrent symptomatic infections (cystitis) are very common. The rapid increase in infections caused by multidrug-resistant uropathogens threatens to make recurrent cystitis an increasingly troubling public health concern. Uropathogenic Escherichia coli (UPEC) cause the vast majority of bladder infections. Upon entry into the lower urinary tract, UPEC face obstacles to colonization that constitute population bottlenecks, reducing diversity, and selecting for fit clones. A critical mucosal barrier to bladder infection is the epithelium (urothelium). UPEC bypass this barrier when they invade urothelial cells and form intracellular bacterial communities (IBCs), a process which requires type 1 pili. IBCs are transient in nature, occurring primarily during acute infection. Chronic bladder infection is common and can be either latent, in the form of the quiescent intracellular reservoir (QIR), or active, in the form of asymptomatic bacteriuria (ASB/ABU) or chronic cystitis. In mice, the fate of bladder infection, QIR, ASB, or chronic cystitis, is determined within the first 24 h of infection and constitutes a putative host–pathogen mucosal checkpoint that contributes to susceptibility to recurrent cystitis. Knowledge of these checkpoints and bottlenecks is critical for our understanding of bladder infection and efforts to devise novel therapeutic strategies.
Resumo:
Few studies are available about the effect of alcohol on the epithelium of the urinary bladder. In the present investigation we studied the ultrastructure of the vesical transition epithelium of normal rats and of rats submitted to experimental chronic alcoholism. Adult rats were submitted to experimental chronic alcoholism by the ingestion of sugar cane liquor. The vesical epithelium was examined after 60, 120, 180 and 240 days of alcohol treatment by transmission electron microscopy. Surface cells presented nuclear and cytoplasmic changes and marked cellular desquamation. There was an increase in multivesicular bodies and lysosomes suggesting cell degeneration. Mast cell infiltration was observed, possibly related to increased epithelial sensitivity. Intercellular spaces were frequently observed. The transition epithelium of the urinary bladder was found to be sensitive to the action of alcohol, as demonstrated by the changes in the components of the blood-urine barrier, the greater sensitivity to inflammation, the increase in cell desquamation and the greater recycling of the apical membrane and of the fusiform vesicles of surface cells observed in alcoholic rats.
Structural alterations of the bladder induced by detrusor instability. experimental study in rabbits
Resumo:
The aim of this study was to evaluate the histopathological and immunohistochemical alterations induced by detrusor instability in the bladder of rabbits submitted to partial bladder outlet obstruction. Thirty male Norfolk rabbits were divided into 2 groups, a clinical control and a group with detrusor instability. Urine culture, cystometric study, histopathological and immunohistochemical analysis were performed in all animals prior to surgery (M1) and 4 weeks after-surgery (M2). Partial obstruction (G2) resulted in a 2.5 fold increment (p < 0.05) in bladder weight when compared to control (G1). Four weeks after surgery, 93% of animals in G2 developed cystitis. Partial obstruction resulted in detrusor instability at M2 and bladder capacity was significantly increased (p < 0.05) from M1 to M2. The incidence of mild to moderate mucosal and adventitious fibrosis at M2 was higher in G2 (p < 0.05) when compared to G1. Inflammatory reaction at M2 was statistically higher (p < 0.05) in G2. There was no difference in muscular hypertrophy between M1 and M2 in G1. However, 67% of G2 bladders showed a moderate to intense muscular hypertrophy at M2. Hyperplasia of the epithelium was also increased in G2 when M1 and M2 were compared (p < 0.05). Detrusor instability induced by partial bladder outlet obstruction caused significant histopathological and immunohistochemical alterations in the bladder of rabbits.
Resumo:
Objectives: The aim of this study was to evaluate the immunoexpression of TWIST and p-Akt proteins in oral leukoplakia (OL) and oral squamous cell carcinoma (OSCC), correlating their expressions with the histological features of the lesions. Study design: Immunohistochemical studies were carried out on 10 normal oral epithelium, 30 OL and 20 OSCC formalin-fixed, paraffin-embedded tissue samples. Immunoperoxidase reactions for TWIST and p-Akt proteins were applied on the specimens and the positivity of the reactions was calculated for 1000 epithelial cells. Results: Kruskal-Wallis and Dunn's post tests revealed a significant difference in TWIST and p-Akt immunoexpression among normal oral mucosa, OL and OSCC. In addition, a significant positive correlation was found between TWIST and p-Akt expressions according to the Pearson's correlation test. Conclusions: The results obtained in the current study suggest that TWIST and p-Akt may participate of the multi-step process of oral carcinogenesis since its early stages.
Resumo:
A number of tight urinary epithelia, as exemplified by the turtle bladder, acidify the luminal solution by active transport of H+ across the luminal cell membrane. The rate of active H+ transport (JH) decreases as the electrochemical potential difference for H+ [delta mu H = mu H(lumen) - mu H(serosa)] across the epithelium is increased. The luminal cell membrane has a low permeability for H+ equivalents and a high electrical resistance compared with the basolateral cell membrane. Changes in JH thus reflect changes in active H+ transport across the luminal membrane. To examine the control of JH by delta mu H in the turtle bladder, transepithelial electrical potential differences (delta psi) were imposed at constant acid-base conditions or the luminal pH was varied at delta psi = 0 and constant serosal PCO2 and pH. When the luminal compartment was acidified from pH 7 to 4 or was made electrically positive, JH decreased as a linear function of delta mu H as previously described. When the luminal compartment was made alkaline from pH 7 to 9 or was made electrically negative, JH reached a maximal value, which was the same whether the delta mu H was imposed as a delta pH or a delta psi. The nonlinear JH vs. delta mu H relation does not result from changes in the number of pumps in the luminal membrane or from changes in the intracellular pH, but is a characteristic of the H+ pumps themselves. We propose a general scheme, which, because of its structural features, can account for the nonlinearity of the JH vs. delta mu H relations and, more specifically, for the kinetic equivalence of the effects of the chemical and electrical components of delta mu H. According to this model, the pump complex consists of two components: a catalytic unit at the cytoplasmic side of the luminal membrane, which mediates the ATP-driven H+ translocation, and a transmembrane channel, which mediates the transfer of H+ from the catalytic unit to the luminal solution. These two components may be linked through a buffer compartment for H+ (an antechamber).