998 resultados para blaNDM-1
Resumo:
We studied the presence of the mobile colistin resistance gene mcr-1 in human, animal, and environmental Enterobacteriaceae samples from Cumana, Venezuela, that were collected in 2015. The mcr-1 gene was detected in 2/93 Escherichia coli isolates from swine (novel ST452) and human (ST19) samples that were resistant to colistin. Whole-genome sequencing and transformation experiments identified mcr-1 on an IncI2 plasmid. One of the isolates also bore the widely spread carbapenemase NDM-1. A One Health approach is necessary to further elucidate the flux of these high-risk genes.
Resumo:
INTRODUCTION blaOXA-48, blaNDM-1 and blaCTX-M-3 are clinically relevant resistance genes, frequently associated with the broad-host range plasmids of the IncL/M group. The L and M plasmids belong to two compatible groups, which were incorrectly classified together by molecular methods. In order to understand their evolution, we fully sequenced four IncL/M plasmids, including the reference plasmids R471 and R69, the recently described blaOXA-48-carrying plasmid pKPN-El.Nr7 from a Klebsiella pneumoniae isolated in Bern (Switzerland), and the blaSHV-5 carrying plasmid p202c from a Salmonella enterica from Tirana (Albania). METHODS Sequencing was performed using 454 Junior Genome Sequencer (Roche). Annotation was performed using Sequin and Artemis software. Plasmid sequences were compared with 13 fully sequenced plasmids belonging to the IncL/M group available in GenBank. RESULTS Comparative analysis of plasmid genomes revealed two distinct genetic lineages, each containing one of the R471 (IncL) and R69 (IncM) reference plasmids. Conjugation experiments demonstrated that plasmids representative of the IncL and IncM groups were compatible with each other. The IncL group is constituted by the blaOXA-48-carrying plasmids and R471. The IncM group contains two sub-types of plasmids named IncM1 and IncM2 that are each incompatible. CONCLUSION This work re-defines the structure of the IncL and IncM families and ascribes a definitive designation to the fully sequenced IncL/M plasmids available in GenBank.
Resumo:
As metalo-β-lactamases (MBL) são capazes de hidrolisar os carbapenêmicos, a classe de antimicrobianos com maior potência para o tratamento de infecções graves e de maior uso clinico. Dentre as MBL, o grupo mais recentemente descrito e que apresentou rápida disseminação em todo o mundo é o da New-Delhi-Metalo- β-lactamases (NDM). Nas enterobactérias, os genes que codificam essas enzimas estão mais frequentemente localizados em plasmídeos. O estudo da estabilidade de plasmídeos que albergam o gene blaNDM-1 é importante para entender a predominância de espécies que carregam esses plasmídeos, desvendar mecanismos moleculares envolvidos na sua persistência e para desenvolver novas drogas que possam diminuir a sua persistência. Estudos recentes sobre estabilidade plasmidial evidenciaram que a maprotilina é capaz de induzir perda plasmidial de até 90% em E. coli K12. Neste trabalho, foi estudado o efeito da maprotilina na indução de cura de plasmídeos, que albergam o gene blaNDM-1, em diferentes espécies da família Enterobacteriaceae. Nove isolados pertencentes a diferentes espécies foram incluídas no estudo. Os plasmídeos foram caracterizados quanto ao seu tamanho por eletroforese e por sequenciamento de DNA no sistema Illumina. A persistência plasmidial foi determinada pelo método de contagem em placa em LB ágar com e sem tratamento com maprotilina em concentrações sub-inibitórias (50mg/L). O experimento foi conduzido por 10 dias, representando aproximadamente 100 gerações. Neste estudo evidenciou-se que o grupo das enterobactérias estão envolvidas na disseminação de plasmídeos com blaNDM-1, sendo que plasmídeos do grupo IncF estão mais relacionados a essa dispersão. A maprotilina teve efeito de cura plasmidial em todos os isolados exceto em E. hormaechei \"subsp. oharae\" e C. freundii. O isolado P. rettgeri apresentou maior taxa de perda plasmidial e a análise comparativa da sequência nucleotídica do plasmídeo indicou que a presença da IS5 pode estar relacionada com a diminuição da persistência plasmidial. Diferenças na persistência plasmidial, quando tratados com maprotilina, entre E. hormaechei \"subsp. steigerwaltii\" e E. hormaechei \"subsp. oharae\" sugerem que E. hormaechei \"subsp. oharae\" pode ser um possível disseminador de plasmídeos albergando blaNDM-1, devido a processos de adaptação co-evolutivos.
Resumo:
Introduction: The production of KPC (Klebsiella pneumoniae carbapenemase) has become an important mechanism of carbapenem-resistance among Enterobacteriaceae strains. In Brazil, KPC is already widespread and its incidence has increased significantly, reducing treatment options. The “perfect storm” combination of the absence of new drug developmentand the emergence of multidrug-resistant strains resulted in the need for the use of older drugs, with greater toxicity, such as polymyxins. Aims: To determine the occurrence of carbapenemase-producing strains in carbapenem-resistant Enterobacteriaceae isolated from patients with nosocomial infection/colonization during September/2014 to August/2015, to determine the risk factors associated with 30-day- mortality and the impact of inappropriate therapy. Materials and Methods: We performed a case control study to assess the risk factors (comorbidities, invasive procedures and inappropriate antimicrobial therapy) associated with 30-day-mortality, considering the first episode of infection in 111 patients. The resistance genes blaKPC, blaIMP, blaVIM and blaNDM-1 were detected by polymerase chain reaction technique. Molecular typing of the strains involved in the outbreak was performed by pulsed field gel electrophoresis technique. The polymyxin resistance was confirmed by the microdilution broth method. Results: 188 episodes of carbapenem-resistant Enterobacteriaceae infections/colonizations were detected; of these, 122 strains were recovered from the hospital laboratory. The presence of blaKPC gene were confirmed in the majority (74.59%) of these isolates. It was not found the presence of blaIMP , blaVIM and blaNDM-1 genes. K. pneumoniae was the most frequent microorganism (77,13%), primarily responsible for urinary tract infections (21,38%) and infections from patients of the Intensive Care Unit (ICU) (61,38%). Multivariate statistical analysis showed as predictors independently associated with mortality: dialysis and bloodstream infection. The Kaplan-Meier curve showed a lower probability of survival in the group of patients receiving antibiotic therapy inappropriately. Antimicrobial use in adult ICU varied during the study period, but positive correlation between increased incidence of strains and the consumption was not observed. In May and July 2015, the occurrence rates of carbapenem-resistant Enterobacteriaceae KPC-producing per 1000 patient-days were higher than the control limit established, confirming two outbreaks, the first caused by colistin-susceptible KPC-producing K. pneumoniae isolates, with a polyclonal profile and the second by a dominant clone of colistin-resistant (≥ 32 μg/mL) KPC-producing K. pneumoniae. The cross transmission between patients became clear by the temporal and spatial relationships observed in the second outbreak, since some patients occupied the same bed, showing problems in hand hygiene adherence among healthcare workers and inadequate terminal disinfection of environment. The outbreak was contained when the ICU was closed to new admissions. Conclusions: The study showed an endemicity of K. pneumoniae KPC-producing in adult ICU, progressing to an epidemic monoclonal expansion, resulted by a very high antibiotic consumption of carbapenems and polymyxins and facilitated by failures in control measures the unit.
Resumo:
The infrared (IR) spectroscopic data and Raman spectroscopic properties for a series of 13 “pinwheel-like” homoleptic bis(phthalocyaninato) rare earth complexes M[Pc(α-OC5H11)4]2 [M = Y and Pr–Lu except Pm; H2Pc(α-OC5H11)4 = 1,8,15,22-tetrakis(3-pentyloxy)phthalocyanine] have been collected and comparatively studied. Both the IR and Raman spectra for M[Pc(α-OC5H11)4]2 are more complicated than those of homoleptic bis(phthalocyaninato) rare earth analogues, namely M(Pc)2 and M[Pc(OC8H17)8]2, but resemble (for IR) or are a bit more complicated (for Raman) than those of heteroleptic counterparts M(Pc)[Pc(α-OC5H11)4], revealing the decreased molecular symmetry of these double-decker compounds, namely S8. Except for the obvious splitting of the isoindole breathing band at 1110–1123 cm−1, the IR spectra of M[Pc(α-OC5H11)4]2 are quite similar to those of corresponding M(Pc)[Pc(α-OC5H11)4] and therefore are similarly assigned. With laser excitation at 633 nm, Raman bands derived from isoindole ring and aza stretchings in the range of 1300–1600 cm−1 are selectively intensified. The IR spectra reveal that the frequencies of pyrrole stretching and pyrrole stretching coupled with the symmetrical CH bending of –CH3 groups are sensitive to the rare earth ionic size, while the Raman technique shows that the bands due to the isoindole stretchings and the coupled pyrrole and aza stretchings are similarly affected. Nevertheless, the phthalocyanine monoanion radical Pc′− IR marker band of bis(phthalocyaninato) complexes involving the same rare earth ion is found to shift to lower energy in the order M(Pc)2 > M(Pc)[Pc(α-OC5H11)4] > M[Pc(α-OC5H11)4]2, revealing the weakened π–π interaction between the two phthalocyanine rings in the same order.
Resumo:
The modification of peripherally metalated meso-η1-platiniometalloporphyrins, such as trans-[PtBr(NiDAPP)(PPh3)2] (H2DAPP = 5-phenyl-10,20-bis(3‘,5‘-di-tert-butylphenyl)porphyrin), leads to the analogous platinum(II) nitrato and triflato electrophiles in almost quantitative yields. Self-assembly reactions of these meso-platinioporphyrin tectons with pyridine, 4,4‘-bipyridine, or various meso-4-pyridylporphyrins in chloroform generate new multicomponent organometallic porphyrin arrays containing up to five porphyrin units. These new types of supramolecular arrays are formed exclusively in high yields and are stable in solution or in the solid state for extended periods. They were characterized by multinuclear NMR and UV−visible spectroscopy as well as high-resolution electrospray ionization mass spectrometry.