12 resultados para bléomycine
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
La stabilité génomique, qui est essentielle à la vie, est possible grâce à la réplication et la réparation de l’ADN. Une des enzymes responsables de la réplication et de la réparation de l’ADN est la ribonucleotide reductase (RNR), qui est retrouvée chez la levure et chez l’humain. Cette enzyme catalyse la formation de déoxyribonucléotides et maintien le pool de dNTP requis pour la réparation et la réplication de l’ADN. L’enzyme RNR est un tétramère α2β2 constitué d’une grande (R1, α2) et d’une petite (R2, β2) sous-unité. Chez S. cerevisiae, les gènes RNR1 et RNR3 encodent la sous-unité α2 (R1). L’activité catalytique de RNR dépend d’une interaction avec le fer et de la formation d’un complexe entre R1 et R2. L’expression de toutes les sous-unités est inductible par les dommages causés à l’ADN. Dans cette étude, nous démontrons que des cellules qui n’expriment pas une des sous-unités, Rnr4, du complexe RNR sont sensibles à divers agents endommageant l’ADN, tels que le méthyl méthane sulfonate, la bléomycine, le péroxyde d’hydrogène et les rayons ultraviolets (UVC 254 nm). Au contraire, le mutant est résistant au 4-nitroquinoline-1- oxide (4-NQO), un composé qui engendre des lésions encombrantes. Par conséquent, le mutant rnr4Δ démontre une réduction marquée en mutations induites par le 4-NQO comparativement à la souche parentale. Nous voulions identifier la voie de réparation de l’ADN qui conférait cette résistance au 4-NQO ainsi que les protéines impliquées. Les voies BER, NER et MMR n’ont pas aboli la résistance au 4-NQO de la souche rnr4Δ. La protéine recombinante Rad51 ne joue pas un rôle critique dans la réparation de l’ADN et dans la résistance au 4-NQO. La délétion du gène REV3, qui encode une polymérase de contournement, impliquée dans la réparation post-réplication, a partiellement aboli la résistance au 4-NQO dans rnr4Δ. Ces résultats suggèrent que la polymérase Rev3 et possiblement d’autres polymérases translésion (Rev1, Rev7, Rad30) pourraient être impliquées dans la réparation de lésions encombrantes dans l’ADN dans des conditions de carence en dNTP. La réparation de l’ADN, un mécanisme complexe chez la levure, implique une vaste gamme de protéines, dont certaines encore inconnues. Nos résultats indiquent qu’il y aurait plus qu’une protéine impliquée dans la résistance au 4-NQO. Des investigations plus approfondies seront nécessaires afin de comprendre la recombinaison et la réparation post-réplication.
Resumo:
Nhx1 est un antiport vacuolaire de Na+/H+ chez la levure Saccharomyces cerevisiae. Nhx1 joue un rôle important dans le maintien de l’homéostasie ionique du cytoplasme de la cellule. En effet, la mutation du gène NHX1 chez la levure nhx1Δ entraîne une perte de l’homéostasie cellulaire quand les cellules sont cultivées dans un milieu de faible osmolarité. Ce travail rapporte pour la première fois, et contrairement à la cellule parentale, que la mutation du gène NHX1 a pour effet une sensibilité du mutant nhx1Δ à une variété des drogues et des agents cationiques et anioniques lorsque les cellules sont cultivées dans un milieu riche. En outre, dans ces conditions de culture, aucune sensibilité n’a été observée chez le mutant nhx1Δ quand les cellules sont traitées avec différentes concentrations de sel. Nous avons aussi démontré que la sensibilité du mutant nhx1Δ aux différents agents ainsi que la sécrétion de l’enzyme carboxypeptidase Y observé chez ce mutant n’ont pas été restauré lorsque les cellules sont cultivées dans des milieux avec différents pH ou avec différentes concentrations de sel. Enfin, une analyse génétique a révélé que le mutant nhx1Δ montre un phénotype distinct d’autres mutants qui ont un défaut dans le trafic entre le compartiment pré-vacuolaire et l’appareil de Golgi quand ces cellules sont traitées avec différents agents. Cette analyse prouve que la sensibilité de nhx1Δ aux différents agents n’est pas liée au trafic entre le compartiment pré-vacuolaire et l’appareil de Golgi.
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
Resumo:
La bléomycine est un antibiotique cytotoxique, son potentiel génotoxique est plus important quand elle est utilisée en combinaison avec des agents antinéoplasiques sur le cancer testiculaire, que sur les autres types qui développent souvent une résistance envers la drogue. Notre but consiste alors de mettre en évidence ce mécanisme de résistance en utilisant l’organisme modèle Saccharomyces cerevisiae. Nous avons démontré au sein de notre laboratoire, que les levures délétées au niveau de leur coactivateur transcriptionnel Imp2, présentent une hypersensibilité à la bléomycine, en raison de son accumulation toxique dans la cellule. Ceci suggère que Imp2 pourrait réguler l’expression d’une ou de plusieurs pompes à efflux, capables d’expulser la bléomycine à l’extérieur de la cellule. Pour tester notre hypothèse, nous avons recherché des suppresseurs multicopies capables de restaurer la résistance à la bléomycine chez le mutant imp2, et c’est ainsi que nous avons identifié l'activateur transcriptionnel Yap1. Ce dernier se lie à une région spécifique localisée au niveau du promoteur et permet d’activer l'expression d'un sous-ensemble de gènes, codant pour des pompes à efflux, impliquées dans la résistance aux drogues. Selon la littérature, au moins 27 pompes à efflux ont été identifiées chez la levure Saccharomyces cerevisiae, certaines d’entre elles disposent du site de liaison pour Yap1, tels que Qdr3, Tpo2 et Tpo1. Afin de déterminer si une de ces pompes expulse la bléomycine, nous avons créé des mutations simples et doubles en combinaison avec IMP2, aussi nous avons verifié si les mutants étaient sensibles à la drogue et enfin, nous avons testé si la surexpression de Yap1 pouvait restaurer le phénotype sauvage chez ces mutants, via l’activation de pompes à efflux.
Resumo:
Le syndrome de détresse respiratoire aiguë (SDRA) se développe suite à une atteinte pulmonaire lésionnelle, induisant un œdème et une inflammation excessive, généralement suivis d’une réparation atypique menant à la fibrose. Malgré de signifiants progrès dans les traitements, la mortalité reste élevée : ~ 40 %. Mon hypothèse de travail est que l’atténuation de l’œdème ou de la réponse inflammatoire pourrait freiner le développement ou la sévérité de la phase exsudative. Nous avons évalué cette hypothèse à l’aide d’un modèle de phase exsudative du SDRA, i.e. instillation intra-trachéale de bléomycine, chez les souris. La modulation des fluides alvéolaires est étudiée avec des souris transgénique (Tg) pour le canal ENaC, qui sont sensibles à la formation d’un œdème. Cependant, ces souris Tg ne sont pas plus sensibles au développement de la phase exsudative en condition lésionnelle (bléomycine). Nous avons déterminé par une étude électrophysiologique des cellules épithéliales alvéolaires de type II (AT II) que ce n’est pas lié à une inhibition par la bléomycine de la fonction du canal ENaC. Le traitement de la réponse inflammatoire associée au SDRA par des glucocorticoïdes est une thérapie potentielle mais controversée. Les glucocorticoïdes dans notre modèle murin ne réduisent pas la sévérité des lésions. Nous avons pu déterminé lors d’expériences in vitro que ce serait dû à une réduction de la capacité de réparation des AT II. En résumé : La modulation du canal ENaC ne modifie pas le développement de la phase exsudative, suggérant que la régulation de l’œdème n’est pas suffisante pour modifier l’évolution du SDRA. La modulation de l’inflammation par les glucocorticoïdes est ineffective, possiblement à cause d’une altération de la réparation. Mon étude suggère que le traitement de la phase exsudative du SDRA est complexe. En effet, la régulation de l’œdème ou de l’inflammation de façon isolée ne peut pas modifier l’évolution du SDRA. L'hétérogénéité des sources du SDRA et la redondance des mécanismes cellulaires impliqués dans l’évolution des lésions pulmonaires suggèrent que le traitement nécessitera une approche visant plusieurs cibles mécanistiques afin d’en accélérer la résolution.
Resumo:
La sclérodermie (sclérose systémique, ScS) est une maladie auto-immune du tissu conjonctif caractérisée par l’épaississement de la peau, l’apparition spontanée de lésions cicatricielles, des maladies des vaisseaux sanguins, divers degrés d’inflammation, en association avec un système immunitaire hyperactif. La pathogénèse exacte de cette maladie est inconnue et aucun traitement approprié n’est disponible. La fibrose est un élément distinctif de la maladie de ScS et est considérée résulter d’une incapacité à mettre fin de façon appropriée à la réponse normale de réparation des plaies. L’analyse histologique du stade initial de la ScS révèle une infiltration périvasculaire de cellules mononucléaires dans le derme, associée à une synthèse accrue de collagène dans les fibroblastes environnants. Ainsi, la compréhension des moyens de contrôler le stade inflammatoire de la ScS pourrait être bénéfique pour contrôler la progression de la maladie peu après son apparition. La mPGES-1 est une enzyme inductible qui agit en aval de la cyclo- oxygénase (COX) pour catalyser spécifiquement la conversion de la prostaglandine (PG) H2 en PGE2. La mPGES-1 joue un rôle clé dans l’inflammation, la douleur et l’arthrite;; toutefois, le rôle de la mPGES-1 dans les mécanismes de fibrose, spécifiquement en rapport avec la ScS humaine, est inconnu. Mon laboratoire a précédemment montré que les souris à mPGES-1 nulle sont résistantes à la fibrose cutanée induite par la bléomycine, à l’inflammation, à l’épaississement cutané, à la production de collagène et à la formation de myofibroblastes. Sur la base de ces résultats, j’ai formulé l’hypothèse que l’inhibition pharmacologique de la mPGES-1 régulera à la baisse la production de médiateurs pro-inflammatoires et pro-fibreux au cours de la maladie de ScS. Afin d’explorer le rôle de la mPGES-1 dans l’inflammation et la fibrose associées à la maladie de ScS, j’ai d’abord examiné l’expression de la mPGES-1 dans la peau normale comparativement à des biopsies de peau extraites de patients atteints de ScS. Mes résultats ont montré que la mPGES-1 est nettement élevée dans la peau de patients atteints de ScS en comparaison avec la peau humaine normale. De plus, les niveaux de PGE2 dérivés de la mPGES-1 étaient également significativement plus élevés dans les fibroblastes cutanés isolés de patients atteints de ScS comparativement aux fibroblastes isolés de témoins sains. J’ai également étudié l’effet de l’inhibition pharmacologique de la mPGES-1 sur l’expression de marqueurs pro- fibreux. Mes études ont montré que l’expression de médiateurs pro-fibreux clés (α-SMA, endothéline-1, collagène de type 1 et facteur de croissance du tissu conjonctif (FCTC)) est élevée dans les fibroblastes cutanés ScS en comparaison avec les fibroblastes cutanés normaux. Un traitement avec un inhibiteur de la mPGES-1 a eu pour effet de réduire significativement l’expression de l’α-SMA, de l’endothéline-1, du collagène de type 1 mais pas du FCTC dans les fibroblastes ScS, sans effet significatif sur les fibroblastes normaux. J’ai en outre examiné l’effet de l’inhibition de la mPGES-1 sur des cytokines pro-inflammatoires clés impliquées dans la pathologie de la ScS, incluant IL-6, IL-8 et MCP-1. L’inhibition pharmacologique de la mPGES- 1 a eu pour effet de réduire significativement les niveaux de production de cytokines pro- inflammatoires IL6, IL8 et MCP-1 dans les fibroblastes avec lésion ScS comparativement à des fibroblastes non traités. De plus, les patients atteints de ScS ont présenté des niveaux plus élevés de p-AKT, de p-FAK et de p-SMAD3 en comparaison avec les fibroblastes cutanés normaux. L’inhibiteur de la mPGES-1 a pu réguler à la baisse cette expression accrue de p-AKT et de p- FAK, mais pas de p-SMAD3, dans les fibroblastes ScS. Ces résultats ont suggéré que l’inhibition de la mPGES-1 pourrait être une méthode viable pour réduire le développement de sclérose cutanée et constituent une cible thérapeutique potentielle pour contrôler les mécanismes fibreux et inflammatoires associés à la pathophysiologie de la maladie de ScS. L’un des autres processus critiques reliés à l’évolution de la réponse fibreuse associée à la maladie de ScS est la différenciation des fibroblastes en des cellules activées spécialisées iii iv appelées myofibroblastes, responsables de déclencher une signalisation adhésive excessive et le dépôt excessif de matrice extracellulaire, conduisant à la destruction de l’architecture de l’organe. Ainsi, l’identification des facteurs endogènes qui initient/ favorisent la différenciation fibroblaste-myofibroblaste peut mener à des stratégies thérapeutiques prometteuses pour contrôler l’excès de signalisation adhésive et de fibrose associé à la maladie de ScS. Des études antérieures dans le domaine de la biologie du cancer ont suggéré que l’éphrine B2, une protéine transmembranaire appartenant à la famille des éphrines, est impliquée dans la signalisation adhésive et le remodelage extracellulaire. Cependant, son rôle dans la fibrose n’a jamais été exploré. Dans la deuxième partie de mon étude, j’ai donc étudié le rôle de l’éphrine B2 dans la fibrose. Mes études montrent que l’expression de l’éphrine B2 est significativement augmentée dans la peau humaine ScS comparativement à la peau normale. Plus important encore, le traitement in vitro de fibroblastes de la peau humaine normale avec de l’éphrine B2 recombinante est capable de transformer des fibroblastes en cellules myofibroblastiques manifestant toutes les caractéristiques myofibroblastiques typiques, incluant la formation accrue de fibres de tension, des adhérences focales, l’activation accrue de la FAK, un accroissement de l’expression et de la migration de fibroblastes et de leur adhérence à la fibronectine à la fois chez les fibroblastes cutanés normaux et ScS. En outre, j’ai traité des souris avec de l’éphrine B2 recombinante et montré que ces souris ont développé une fibrose cutanée significative associée à une épaisseur dermique et à une synthèse de collagène augmentées, une teneur en hydroxyproline (teneur en collagène) accrue et un nombre accru de myofibroblastes exprimant de l’α-SMA, une activation augmentée de la FAK et de marqueurs pro-fibreux incluant le collagène de type 1 et le FCTC. Dans l’ensemble, mes études ont identifié deux médiateurs endogènes cruciaux impliqués dans la propagation de l’inflammation et de la fibrose associées à la maladie de ScS. L’inhibition de la mPGES-1 pourrait représenter une bonne stratégie alternative pour contrer l’inflammation et la fibrose au moins durant les stades précoces de la maladie de ScS. De plus, une signalisation excessive de l’éphrine B2 favorise la signalisation adhésive et fibreuse en déclenchant la différenciation de fibroblastes en myofibroblastes par l’activation de la voie de signalisation de la FAK. Ainsi, l’inhibition d’éphrine B2 bloquera la formation de fibroblastes-myofibroblastes et régulera à la baisse la fibrose associée à la maladie de ScS. En somme, la mPGES-1 et l’éphrine B2 semblent toutes deux des cibles attrayantes pour le traitement de la ScS et des troubles fibreux qui y sont reliés.
Resumo:
La sclérodermie (SSc) est une maladie rare affectant les personnes génétiquement prédisposées d’une réponse immunitaire défectueuse. Malgré les derniers avancements et développements dans le domaine, l’étiologie et la pathogénèse de la maladie demeurent peu comprises. Par ailleurs, il y a un ralentissement dans la compréhension de cette maladie à cause du manque de modèle animal représentatif de la SSc humaine. Malgré plusieurs lacunes, les souris traitées avec la bléomycine ou portant des modifications génétiques (TSK-1) sont très utilisées dans les études précliniques de la SSc mais elles ne présentent pas toutes les caractéristiques de cette maladie. Pour contribuer à la recherche sur la SSc, la stagiaire postdoctorale Dre Heena Mehta a développé dans le laboratoire du Dre Sarfati en collaboration avec le Dr Senécal, un modèle de souris expérimental induit par l’immunisation de cellules dendritiques (DCs) chargées de peptides de la protéine topoisomérase I (TOPOIA et TOPOIB). Dans le but de caractériser ce modèle murin et d’établir un profil immunitaire, j’ai concentré mes analyses principalement sur les caractéristiques de la SSc telles que la fibrose, l’inflammation, l’hyper-γ-globulinémie polyclonale, la vasculopathie ainsi que de l’expression de cytokines. Brièvement, l’immunisation de souris avec les DCs chargées avec la topoisomérase I (TOPOI) a induit l’inflammation pulmonaire et cutanée, en plus de la fibrose sous forme diffuse (dcSSc). Les souris présentaient également des symptômes de la vasculopathie ainsi que des taux élevés d’anticorps polyclonaux. Les résultats démontraient que les peptides TOPOIA étaient efficaces dans l’induction de la fibrose et de la réponse inflammatoire alors que les peptides TOPOIB étaient surtout impliqués dans la fibrose cutanée. En plus de nos résultats, les observations préliminaires sur le profil de cytokines tissulaires suggéraient que ce modèle pourrait remplacer ou complémenter les autres modèles animaux de SSc.
Resumo:
La sclérodermie (SSc) est une maladie rare affectant les personnes génétiquement prédisposées d’une réponse immunitaire défectueuse. Malgré les derniers avancements et développements dans le domaine, l’étiologie et la pathogénèse de la maladie demeurent peu comprises. Par ailleurs, il y a un ralentissement dans la compréhension de cette maladie à cause du manque de modèle animal représentatif de la SSc humaine. Malgré plusieurs lacunes, les souris traitées avec la bléomycine ou portant des modifications génétiques (TSK-1) sont très utilisées dans les études précliniques de la SSc mais elles ne présentent pas toutes les caractéristiques de cette maladie. Pour contribuer à la recherche sur la SSc, la stagiaire postdoctorale Dre Heena Mehta a développé dans le laboratoire du Dre Sarfati en collaboration avec le Dr Senécal, un modèle de souris expérimental induit par l’immunisation de cellules dendritiques (DCs) chargées de peptides de la protéine topoisomérase I (TOPOIA et TOPOIB). Dans le but de caractériser ce modèle murin et d’établir un profil immunitaire, j’ai concentré mes analyses principalement sur les caractéristiques de la SSc telles que la fibrose, l’inflammation, l’hyper-γ-globulinémie polyclonale, la vasculopathie ainsi que de l’expression de cytokines. Brièvement, l’immunisation de souris avec les DCs chargées avec la topoisomérase I (TOPOI) a induit l’inflammation pulmonaire et cutanée, en plus de la fibrose sous forme diffuse (dcSSc). Les souris présentaient également des symptômes de la vasculopathie ainsi que des taux élevés d’anticorps polyclonaux. Les résultats démontraient que les peptides TOPOIA étaient efficaces dans l’induction de la fibrose et de la réponse inflammatoire alors que les peptides TOPOIB étaient surtout impliqués dans la fibrose cutanée. En plus de nos résultats, les observations préliminaires sur le profil de cytokines tissulaires suggéraient que ce modèle pourrait remplacer ou complémenter les autres modèles animaux de SSc.
Resumo:
Les anthracyclines, comme la doxorubicine (DOX) ou la daunorubicine (DNR), sont utilisées dans le traitement d’une grande variété de cancers allant des lymphomes, au cancer du sein, en passant par certaines leucémies. Encore aujourd’hui, beaucoup pensent que les anthracyclines entrent dans les cellules par diffusion passive, toutefois, la plupart de ces mêmes personnes sont d’accord pour dire que la p-glycoprotéine est responsable d’exporter ces molécules hors de la cellule. Mais pourquoi une molécule aurait besoin d’un transporteur pour sortir de la cellule, et pas pour y entrer ? Qu’est-ce qui ferait que la diffusion passive fonctionnerait dans un sens, mais pas dans l’autre, d’autant que l’entrée des anthracyclines dans les cellules est très rapide ? Nous pensons qu’il existe bel et bien un transporteur responsable de faire passer les anthracyclines du milieu extracellulaire au cytoplasme, et nous voulons développer un modèle de levure qui permettrait de déterminer si une protéine, un transporteur, issue d’un autre organisme eucaryote est en mesure de transporter la DOX à l’intérieur de la cellule. Pour ce faire, nous avons rassemblé un groupe de mutants présentant une déficience dans l’absorption d’autres molécules chargées positivement telles que la bléomycine ou le NaD1 et avons déterminé le taux d’absorption de DOX de chacun de ces mutants. Les simples mutants sam3Δ ou dur3Δ n’ont montré qu’une faible réduction de l’absorption de DOX, voire, aucune, par rapport à la souche parentale. Si le double mutant sam3Δdur3Δ a montré une réduction relativement importante de l’absorption de DOX, c’est le mutant agp2Δ qui présentait la plus grande réduction d’absorption de DOX, ainsi qu’une résistance notable à son effet létal. Nous avons utilisé, par la suite, ce mutant pour exprimer, à l’aide d’un vecteur d’expression, une protéine du ver Caenorhabditis elegans, OCT-1 (CeOCT-1). Les résultats ont montré que cette protéine était en mesure de restaurer l’absorption de DOX, compromise chez le mutant agp2Δ ainsi que d’augmenter la sensibilité de la souche parentale à son effet létal, lorsqu’exprimée chez celle-ci. Cela suggère que CeOCT-1 est un transporteur fonctionnel de DOX et contredit également le dogme selon lequel les anthracyclines entrent dans les cellules par diffusion passive.
Resumo:
Les anthracyclines, comme la doxorubicine (DOX) ou la daunorubicine (DNR), sont utilisées dans le traitement d’une grande variété de cancers allant des lymphomes, au cancer du sein, en passant par certaines leucémies. Encore aujourd’hui, beaucoup pensent que les anthracyclines entrent dans les cellules par diffusion passive, toutefois, la plupart de ces mêmes personnes sont d’accord pour dire que la p-glycoprotéine est responsable d’exporter ces molécules hors de la cellule. Mais pourquoi une molécule aurait besoin d’un transporteur pour sortir de la cellule, et pas pour y entrer ? Qu’est-ce qui ferait que la diffusion passive fonctionnerait dans un sens, mais pas dans l’autre, d’autant que l’entrée des anthracyclines dans les cellules est très rapide ? Nous pensons qu’il existe bel et bien un transporteur responsable de faire passer les anthracyclines du milieu extracellulaire au cytoplasme, et nous voulons développer un modèle de levure qui permettrait de déterminer si une protéine, un transporteur, issue d’un autre organisme eucaryote est en mesure de transporter la DOX à l’intérieur de la cellule. Pour ce faire, nous avons rassemblé un groupe de mutants présentant une déficience dans l’absorption d’autres molécules chargées positivement telles que la bléomycine ou le NaD1 et avons déterminé le taux d’absorption de DOX de chacun de ces mutants. Les simples mutants sam3Δ ou dur3Δ n’ont montré qu’une faible réduction de l’absorption de DOX, voire, aucune, par rapport à la souche parentale. Si le double mutant sam3Δdur3Δ a montré une réduction relativement importante de l’absorption de DOX, c’est le mutant agp2Δ qui présentait la plus grande réduction d’absorption de DOX, ainsi qu’une résistance notable à son effet létal. Nous avons utilisé, par la suite, ce mutant pour exprimer, à l’aide d’un vecteur d’expression, une protéine du ver Caenorhabditis elegans, OCT-1 (CeOCT-1). Les résultats ont montré que cette protéine était en mesure de restaurer l’absorption de DOX, compromise chez le mutant agp2Δ ainsi que d’augmenter la sensibilité de la souche parentale à son effet létal, lorsqu’exprimée chez celle-ci. Cela suggère que CeOCT-1 est un transporteur fonctionnel de DOX et contredit également le dogme selon lequel les anthracyclines entrent dans les cellules par diffusion passive.